The present study proposes a unified numerical approach to the problem of optimum design of the thermoelectric devices for cooling electronic components. The standard mathematical model of a single-stage thermoelectric cooler (TEC) with constant material properties is employed. The model takes into account the thermal resistances from the hot and cold sides of the TEC. Values of the main physical parameters governing the TEC performance (Seebeck coefficient, electrical resistance, and thermal conductance) are derived from the manufacturer catalog data on the maximum achievable temperature difference, and the corresponding electric current and voltage. The optimization approach is illustrated with several examples for different design objective functions, variables, and constraints. The objective for the optimization search is the maximization of the total cooling rate or the performance coefficient of the cooling device. The independent variables for the optimization search are as follows: The number of the thermoelectric modules, the electric current, and the cold side temperature of the TEC. Additional independent variables in other cases include the number of thermoelectric couples and the area-to-height ratio of the thermoelectric pellet. In the present study, the optimization problems are solved numerically using the so-called multistart adaptive random search method.

1.
Kraus
,
A. D.
, and
Bar-Cohen
,
A.
, 1983,
Thermal Analysis and Control of Electronic Equipment
,
Hemisphere
,
New York
.
2.
Yeh
,
L.-T.
, and
Chu
,
R. C.
, 2002,
Thermal Management of Microelectronic Equipment: Heat Transfer Theory, Analysis Methods, and Design Practices
,
ASME
,
New York
.
3.
Sergent
,
J. E.
, and
Krum
,
A.
, 1998,
Thermal Management Handbook for Electronic Assembles
,
McGraw-Hill
,
New York
.
4.
Ioffe
,
A. F.
, 1957,
Semiconductor Thermoelements and Thermoelectric Cooling
,
Infosearch
,
London
.
5.
Heikes
,
R. R.
, and
Ure
,
R. W.
Jr.
, 1961,
Thermoelectricity: Science and Engineering
,
Interscience
,
New York
.
6.
1995,
CRC Handbook of Thermoelectrics
,
D. M.
Rowe
, ed.,
CRC LLC
,
Boca Raton, FL
.
7.
Nolas
,
G. S.
,
Sharp
,
J.
, and
Goldsmid
,
H. J.
, 2001,
Thermoelectrics: Base Principles and New Materials Developments
,
Springer
,
New York
.
8.
Vedernikov
,
M. V.
,
Vyalov
,
A. P.
, et al.
, 2002,
Thermoelectric Refrigeration Lectures
,
L. P.
Bulat
, ed., St. Petersburg State University of Refrigeration, St. Petersburg, Russia, In Russian.
9.
Seifert
,
W.
,
Ueltzen
,
M.
, and
Muller
,
E.
, 2002, “
One-dimensional Modeling of Thermoelectric Cooling
,”
Phys. Status Solidi A
0031-8965,
194
(
1
), pp.
277
290
.
10.
Simons
,
R. E.
,
Ellsworth
,
M. J.
, and
Chu
,
R. C.
, 2005, “
An Assessment of Module Cooling Enhancement With Thermoelectric Coolers
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
76
84
.
11.
Phelan
,
P. E.
,
Chiriac
,
V. A.
, and
Lee
,
T.-Y. T.
, 2002, “
Current and Future Miniature Refrigeration Cooling Technologies for High Power Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
3
), pp.
356
365
.
12.
Hodes
,
M.
, 2005, “
On One-Dimensional Analysis of Thermoelectric Modules (TEMs)
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
2
), pp.
218
229
.
13.
Hodes
,
M.
, 2006, “
Precision Temperature Control Using Thermoelectric Module
,”
Heat Transfer Calculations
, edited by
M.
Kutz
,
McGraw-Hill
,
New York
, Chap. 37.
14.
Hodes
,
M.
, 2005, “
Sizing of Pellets in Thermoelectric Modules (TEMs)
,”
Proceedings of the IPACK2005 ASME InterPACK-05 Conference
,
San Francisco
,
CA
, Jun. 17–22.
15.
Melcor Corporation, “
Device Performance Formulae
,” http://www.melcor.comhttp://www.melcor.com
16.
Kryotherm Engineering and Production Firm, “
Thermoelectric Modules Catalog
,” http://www.kryotherm.ruhttp://www.kryotherm.ru
17.
Muzychka
,
Y. S.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2003, “
Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels
,”
J. Electron. Packag.
1043-7398,
125
, pp.
1718
185
.
18.
Webb
,
R. L.
,
Gilley
,
M. D.
, and
Zarnescu
,
V.
, 1998, “
Advanced Heat Exchange Technology for Thermoelectric Cooling Devices
,”
ASME J. Electron. Packag.
1043-7398,
120
, pp.
98
105
.
19.
Chen
,
J.
, and
Yan
,
Z.
, 1994, “
Optimal Performance of a Thermoelectric Refrigerator
,”
Ann. Isr. Phys. Soc.
0309-8710,
316
(
1
), pp.
199
202
.
20.
The University of Waterloo Microelectronics Heat Transfer Laboratory (MHTL) “
Spreading Resistance of Rectangular Source on Rectangular Disk with Edge Cooling
,” http://www.mhtl.uwaterloo.ca/onlinetools/disksquare/http://www.mhtl.uwaterloo.ca/onlinetools/disksquare/
21.
Simons
,
R. E.
, 2004, “
Simple Formulas for Estimating Thermal Spreading Resistance
,” Electronics Cooling Magazine, May 12.
22.
Ritzer
,
T. M.
, and
Lau
,
P. G.
, 1994, “
Economic Optimization of Heat Sink Design
,”
Ann. Isr. Phys. Soc.
0309-8710,
316
(
1
), pp.
177
180
.
23.
Xuan
,
X. C.
, 2002, “
Optimum Design of a Thermoelectric Device
,”
Semicond. Sci. Technol.
0268-1242,
17
, pp.
114
119
.
24.
Rao
,
S. S.
, 1996,
Engineering Optimization: Theory and Practice
, 3rd ed.,
Wiley
,
New York
.
25.
Litinetski
,
V. V.
, and
Abramzon
,
B.
, 1998, “
Mars—A Multistart Adaptive Random Search Method for Global Constrained Optimization in Engineering Applications
,”
Eng. Optimiz.
0305-215X,
30
, pp.
125
154
.
26.
Abramzon
,
B.
, 1996, “
Compact Fins and Plates Heat Exchangers Optimization by Random Search Methods
,”
Proceedings of the 26th Israel Conference on Mechanical Engineering
,
Technion, Haifa
, pp.
312
318
.
27.
Abramzon
,
B.
, 2001, “
Numerical Optimization of Extended Heat Transfer Surfaces and Compact Heat Exchangers
,”
Proceedings of the 12th International Heat Transfer Conference
,
Grenoble, France
, Aug. 18–23.
28.
Litinetski
,
V. V.
, 2001 (unpublished).
You do not currently have access to this content.