A compact analytical model is proposed for predicting thermal joint resistance of rough polymer-metal interfaces in a vacuum. The model assumes plastic deformation at microcontacts and joint temperatures less than the polymer’s glassy temperature. The joint resistance includes two components: (i) bulk resistance of the polymer, and (ii) microcontacts resistance, i.e., constriction∕spreading resistance of the microcontacts at the interface. Performing a deformation analysis, it is shown that the deformation mode of surface asperities is plastic for most polymers studied. It is observed that the thermophysical properties of the polymer control the thermal joint resistance and the metallic surface properties have a second order effect on the thermal joint resistance. A new nondimensional parameter, the ratio of microcontacts over bulk thermal resistances, is proposed as a criterion to specify the relative importance of the microcontacts thermal resistance. The present model is compared with more than 140 experimental data points collected for a selected number of polymers. The averaged rms relative difference between the model and data is approximately 12.7%.

1.
Gurrum
,
S.
,
Suman
,
S.
,
Joshi
,
Y.
, and
Fedorov
,
A.
, 2003, “
Thermal Issues in Next Generation Integrated Circuits
,”
International Electronic Packaging Technical Conference and Exhibition
, Paper No. IPack03-35309, July 6–11, Maui, Hawaii, USA, 2003.
2.
Marotta
,
E. E.
, and
Fletcher
,
L. S.
, 1996, “
Thermal Contact Conductance of Selected Polymeric Materials
,”
J. Thermophys. Heat Transfer
0887-8722, AIAA,
10
, pp.
334
342
.
3.
Yovanovich
,
M. M.
, and
Marotta
,
E. E.
, 2003,
Thermal Spreading and Contact Resistances
,
Bejan
A.
, and
Kraus
D.
, eds.,
Wiley
,
New York
, Chap. 4.
4.
Fletcher
,
L. S.
, and
Miller
,
R. G.
, 1974, “
Thermal Conductance of Gasket Materials For Spacecraft Joints
,”
Prog. Astronaut. Aeronaut.
0079-6050,
35
, pp.
335
349
.
5.
Parihar
,
S.
, and
Wright
,
N. T.
, 1997, “
Thermal Contact Resistance At Elastomer to Metal Interfaces
,”
Int. Commun. Heat Mass Transfer
0735-1933,
24
, pp.
1083
1092
.
6.
Mikic
,
B. B.
, 1974, “
Thermal Contact Conductance: Theoretical Considerations
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
205
214
.
7.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
, 1969, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
279
300
.
8.
Fuller
,
J. J.
, and
Marotta
,
E. E.
, 2001, “
Thermal Contact Conductance of Metal∕Polymer Joints: An Analytical and Experimental Investigation
,”
J. Thermophys. Heat Transfer
0887-8722,
15
, pp.
228
238
.
9.
Tabor
,
D.
, 1951,
The Hardness of Metals
,
Oxford University Press
,
Amen House, London E.C.4, UK
.
10.
Bahrami
,
M.
,
Culham
,
J. R.
,
Yovanovich
,
M. M.
, and
Schneider
,
G. E.
, 2004, “
Review Of Thermal Joint Resistance Models for Non-Conforming Rough Surfaces in a Vacuum
,”
ASME J. Appl. Mech. Rev.
(in press), also HT2003-47051.
11.
Calleja
,
F. J. B.
, and
Fakirov
,
S.
, 2000,
Microhardness of Polymers
,
Oxford University Press
,
Amen House, London E.C.4, UK
.
12.
Yovanovich
,
M. M.
, 1982, “
Thermal Contact Correlations
,” AIAA Paper No. 81-1164, also
Progress in Aeronautics and Aerodynamics: Spacecraft Radiative Transfer and Temperature Control
, edited by
Horton
T. E.
, Vol.
83
, pp.
83
95
.
13.
Archard
,
J. F.
, 1953, “
Contact and Rubbing of Flat Surface
,”
J. Appl. Phys.
0021-8979,
24
, pp.
981
988
.
14.
Greenwood
,
J. A.
, and
Williamson
,
B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
15.
Clausing
,
A. M.
, and
Chao
,
B. T.
, 1965, “
Thermal Contact Resistance in a Vacuum Environment
,”
ASME J. Heat Transfer
0022-1481,
87
, pp.
243
251
.
16.
Clausing
,
A. M.
, and
Chao
,
B. T.
, 1963, “
Thermal Contact Resistance in a Vacuum Environment
,” Technical Report,
University of Illinois
, Urbana, Illinois, Report No. ME-TN-242-1, August.
17.
Bahrami
,
M.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2004, “
A Scale Analysis Approach to Thermal Contact Resistance
,”
ASME J. Heat Transfer
0022-1481,
126
(
6
), pp.
896
905
.
You do not currently have access to this content.