We study cracking from the interface of an In60-Pb40 solder joint on a brittle GaAs die when the joint is subjected to a uniform temperature change. Our primary objective is to apply and validate a fracture initiation criterion based on critical values of the stress intensities that arise from an analysis of the asymptotic elastic stress fields at the interface corner. In some regards the approach is similar to interface fracture mechanics; however, it differs in that it is based on a singular field other than that for a crack. We begin by determining the shape that the solder bump will assume after reflow when constrained by a fixed diameter wetting pad on the GaAs. To simplify the interpretation of the results, we focus on a class of solder bumps of various sizes, but with a self-similar shape. The approach, though, can be applied to different size and shape solder bumps. We then compute the asymptotic interface corner fields when the system is subjected to a uniform temperature change. The asymptotic structure (radial and angular dependence) of the elastic fields is computed analytically, and the corresponding stress intensities that describe the scaling of the elastic fields with geometry and loading are computed by axisymmetric finite element analysis. In order to assess the validity of fracture correlation using critical stress intensities, we designed and fabricated a series of test structures consisting of In60-Pb40 solder bumps on a GaAs chip. The test structures were subjected to uniform temperature drops from room temperature to induce cracking at the interface corner. From the tests we determined the relationship between the solder bump size and the temperature change at which cracking occurred. Not unexpectedly, smaller bumps required larger temperature changes to induce cracking. The observed scaling between solder bump size and temperature change is well described by the critical stress intensity failure criterion based on only a single parameter, the critical value of the mode 1 stress intensity, K1crn. Interestingly, this is because over a significant region, the mode 2 and constant terms in the asymptotic expansion cancel each other. This failure criterion provides the necessary machinery to construct failure maps in terms of geometry and thermomechanical loading. We conclude by describing how to apply the approach in more general and more practical settings that are possibly applicable to a wide range of problems in microelectronics, optoelectronics, and microelectromechanical systems packaging.

1.
Vidano
,
R. P.
,
Paananen
,
D. W.
,
Miers
,
T. H.
,
Krause
,
J.
,
Agricola
,
K. R.
, and
Hauser
,
R. L.
,
1987
, “
Mechanical Stress Reliability Factors for Packaging GaAs MMIC and LSIC Components
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
12
, pp.
612
617
.
2.
Brown
,
M. D.
,
Singh
,
S. B.
,
Malshe
,
A. P.
,
Gordon
,
M. H.
,
Schmidt
,
W. F.
, and
Brown
,
W. D.
,
1999
, “
Thermal and Mechanical Analysis of High-Power GaAs Flip-Chips on CVD Diamond Substrates
,”
Diamond Relat. Mater.
,
8
, pp.
1927
1935
.
3.
Chen
,
W. T.
,
Read
,
D.
,
Questad
,
D.
, and
Sammakia
,
B.
,
1997
, “
Opportunities and Needs for Interfacial Fracture Mechanics in Microelectronic Packaging Industry
,”
Application of Fracture Mechanics in Electronic Packaging, ASME
,
AMD-222/EEP-20
, pp.
183
192
.
4.
Hattori
,
T.
,
Sakata
,
S.
,
Hatsuda
,
T.
, and
Murakami
,
G.
,
1989
, “
A Stress Singularity Parameter Approach for Evaluating the Interfacial Reliability of Plastic Encapsulated LSI Devices
,”
J. Electron. Packag.
,
111
, pp.
243
248
.
5.
Reedy
, Jr.,
E. D.
, and
Guess
,
T. R.
,
1993
, “
Comparison of Butt Tensile Strength Data With Interface Corner Stress Intensity Factor Prediction
,”
Int. J. Solids Struct.
,
30
, pp.
2929
2936
.
6.
Reedy
, Jr.,
E. D.
, and
Guess
,
T. R.
,
1995
, “
Butt Tensile Joint Strength: Interface Corner Stress Intensity Factor Prediction
,”
J. Adhes. Sci. Technol.
,
9
, pp.
237
251
.
7.
Reedy
, Jr.,
E. D.
, and
Guess
,
T. R.
,
1996
, “
Butt Joint Strength: Effects of Residual Stress and Stress Relaxation
,”
J. Adhes. Sci. Technol.
,
9
, pp.
237
251
.
8.
Reedy
, Jr.,
E. D.
, and
Guess
,
T. R.
,
1996
, “
Interface Corner Stress States: Plasticity Effects
,”
Int. J. Fract.
,
81
, pp.
269
282
.
9.
Reedy, Jr., E. D., and Guess, T. R., 1998, “Interface Corner Failure Analysis of Joint Strength: Effect of Adherent Stiffness,” Int. J. Fract., in press.
10.
Reedy, Jr., E. D., and Guess, T. R., 2001, “Nucleation and Propagation of an Edge Crack in a Uniformly Cooled Epoxy/Glass Bimaterial,” in press.
11.
Reedy
, Jr.,
E. D.
,
2000
, “
Connection Between Interface Corner and Interfacial Fracture Analyses of an Adhesively-Bonded Butt Joint
,”
Int. J. Solids Struct.
,
37
, pp.
2429
2442
.
12.
Reedy, E. D., 2001, “Strength of Butt and Sharp-Cornered Joints,” Comprehensive Adhesion Science, in press.
13.
Qian
,
Z.
, and
Akisanya
,
A. R.
,
1998
, “
An Experimental Investigation of Failure Initiation in Bonded Joints
,”
Int. J. Solids Struct.
,
46
, pp.
4895
4904
.
14.
Mohammed
,
H.
, and
Liechti
,
K. M.
,
2000
, “
Cohesive Zone Modeling of Crack Nucleation at Bimaterial Corners
,”
J. Mech. Phys. Solids
,
48
, pp.
735
764
.
15.
Dunn
,
M. L.
,
Cunningham
,
S. J.
, and
Labossiere
,
P. E. W.
,
2000
, “
Initiation Toughness of Silicon/Glass Anodic Bonds
,”
Acta Mater.
,
48
, pp.
735
744
.
16.
Dunn
,
M. L.
,
Suwito
,
W.
, and
Cunningham
,
S. J.
,
1997
, “
Fracture Initiation at Sharp Notches: Correlation Using Critical Stress Intensities
,”
Int. J. Solids Struct.
,
34
, pp.
3873
3883
.
17.
Dunn
,
M. L.
,
Suwito
,
W.
,
Cunningham
,
S. J.
, and
May
,
C. W.
,
1997
, “
Fracture Initiation at Sharp Notches Under Mode I, Mode II, and Mild Mixed-Mode Loading
,”
Int. J. Fract.
,
84
, pp.
367
381
.
18.
Suwito
,
W.
,
Dunn
,
M. L.
,
Cunningham
,
S. J.
, and
Read
,
D. T.
,
1999
, “
Elastic Moduli, Strength, and Fracture Initiation at Sharp Notches of Etched Single Crystal Silicon Microstructures
,”
J. Appl. Phys.
,
85
, pp.
3519
3534
.
19.
Williams
,
M. L.
,
1952
, “
Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension
,”
J. Appl. Mech.
,
19
, pp.
526
528
.
20.
Bogy
,
D. B.
, and
Wang
,
K. C.
,
1971
, “
Stress Singularities at Interface Corners in Bonded Dissimilar Materials
,”
Int. J. Solids Struct.
,
7
, pp.
993
1005
.
21.
Hein
,
V. L.
, and
Erdogan
,
F.
,
1971
, “
Stress Singularities in a Two Material Wedge
,”
Int. J. Fract. Mech.
,
7
, pp.
317
330
.
22.
Dempsey
,
J. P.
, and
Sinclair
,
G. B.
,
1979
, “
On the Stress Singularities in the Plane Elasticity of the Composite Wedge
,”
J. Elast.
,
9
, pp.
373
391
.
23.
Dempsey
,
J. P.
, and
Sinclair
,
G. B.
,
1981
, “
On the Singular Behavior at the Vertex of a Bimaterial Wedge
,”
J. Elast.
,
11
, pp.
317
327
.
24.
Kuo
,
M. C.
, and
Bogy
,
D. B.
,
1974
, “
Plane Solutions for Displacement and Traction-Displacement Problems for Anisotropic Elastic Wedges
,”
J. Appl. Mech.
,
41
, pp.
197
203
.
25.
Ting
,
T. C. T.
, and
Chou
,
S. C.
,
1981
, “
Edge Singularities in Anisotropic Composites
,”
Int. J. Solids Struct.
,
17
, pp.
1057
1068
.
26.
Pageau
,
S. S.
,
Joseph
,
P. F.
, and
Biggers
,
S. B.
,
1995
, “
Finite Element Analysis of Anisotropic Materials With Singular In-Plane Stress Fields
,”
Int. J. Solids Struct.
,
32
, pp.
571
591
.
27.
Szabo
,
B.
, and
Yosibash
,
Z.
,
1996
, “
Numerical Analysis of Singularities in Two-Dimensions Part 2: Computation of Generalized Flux/Stress Intensity Factors
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
409
434
.
28.
Ting, T. C. T., 1996, Anisotropic Elasticity: Theory and Applications, Oxford University Press, Oxford.
29.
Ting, T. C. T., 1998, “Stress Singularities at the Tip of Interfaces in Polycrystals,” in Damage and Failure of Interfaces, Rossmanith (ed.), Balkema, Rotterdam, pp. 75–82.
30.
Carpenter
,
W. C.
,
1984
, “
A Collocation Procedure for Determining Fracture Mechanics Parameters at a Corner
,”
Int. J. Fract.
,
24
, pp.
255
266
.
31.
Sinclair
,
G. B.
,
Okajima
,
M.
, and
Griffen
,
J. H.
,
1984
, “
Path Independent Integrals for Computing Stress Intensity Factors at Sharp Notches in Elastic Plates
,”
Int. J. Numer. Methods Eng.
,
20
, pp.
999
1008
.
32.
Carpenter
,
W. C.
, and
Byers
,
C.
,
1987
, “
A Path Independent Integral for Computing Stress Intensities for V-Notched Cracks in a Bi-Material
,”
Int. J. Fract.
,
35
, pp.
245
268
.
33.
Munz
,
D.
, and
Yang
,
Y. Y.
,
1993
, “
Stresses Near the Edge of Bonded Dissimilar Materials Described by Two Stress Intensity Factors
,”
Int. J. Fract.
,
60
, pp.
169
177
.
34.
Munz
,
D.
,
Fett
,
T.
, and
Yang
,
Y. Y.
,
1993
, “
The Regular Stress Term in Bonded Dissimilar Materials After a Change in Temperature
,”
Eng. Fract. Mech.
,
44
, pp.
185
194
.
35.
Akisanya
,
A. R.
, and
Fleck
,
N. A.
,
1997
, “
Interfacial Cracking From the Free-Edge of a Long Bi-Material Strip
,”
Int. J. Solids Struct.
,
34
, pp.
1645
1665
.
36.
Labossiere
,
P. E. W.
, and
Dunn
,
M. L.
,
1999
, “
Stress Intensities at Interface Corners in Anisotropic Bimaterials
,”
Eng. Fract. Mech.
,
62
, pp.
555
575
.
37.
Im
,
S.
, and
Kim
,
K.-S.
,
2001
, “
An Application of Two-State M-Integral for Computing the Intensity of the Singular Near-Tip Field for a Generic Wedge
,”
J. Mech. Phys. Solids
,
48
, pp.
129
151
.
38.
Hui
,
C. Y.
, and
Ruina
,
A.
,
1995
, “
Why K? Higher Order Singularities and Small Scale Yielding
,”
Int. J. Fract.
,
72
, pp.
97
120
.
39.
Dunn
,
M. L.
,
Hui
,
C. Y.
,
Labossiere
,
P. E. W.
, and
Lin
,
Y. Y.
,
2001
, “
Small Scale Geometric and Material Features at Geometric Discontinuities and Their Role in Fracture Analysis
,”
Int. J. Fract.
,
110
, pp.
101
121
.
40.
Liu
,
X. H.
,
Suo
,
Z.
, and
Ma
,
Q.
,
1998
, “
Split Singularities: Stress Field Near the Edge of a Silicon Die on a Polymer Substrate
,”
Acta Mater.
,
47
, pp.
67
76
.
41.
Yang
,
Y. Y.
, and
Munz
,
D.
,
1995
, “
Stress Intensity Factor and Stress Distribution in a Joint With an Interface Corner Under Thermal and Mechanical Loading
,”
Comput. Struct.
,
57
, pp.
461
476
.
42.
Genestedt
,
J. L.
, and
Hallstrom
,
S.
,
1997
, “
Crack Initiation From Homogeneous and Bimaterial Corners
,”
J. Appl. Mech.
,
64
, pp.
811
818
.
43.
Joseph
,
P. F.
, and
Zhang
,
N.
,
1998
, “
Multiple Root Solutions, Wedge Paradoxes and Singular Stress States That are not Variable-Separable
,”
Compos. Sci. Technol.
,
58
, pp.
1839
1859
.
44.
Yang
,
Y. Y.
, and
Munz
,
D.
,
1997
, “
Stress Intensity Factor and Stress Distribution in a Joint With an Interface Corner Under Thermal and Mechanical Loading
,”
Eng. Fract. Mech.
,
56
, pp.
691
710
.
45.
Frankle
,
M.
,
Munz
,
D.
, and
Yang
,
Y. Y.
,
1996
, “
Stress Singularities in a Bimaterial Joint With Inhomogeneous Temperature Distribution
,”
Int. J. Solids Struct.
,
33
, pp.
2039
2054
.
46.
Glushkov
,
E. V.
,
Glushkova
,
N. V.
,
Munz
,
D.
, and
Yang
,
Y. Y.
,
2000
, “
Analytical Solution for Bonded Wedges Under Thermal Stresses
,”
Int. J. Fract.
,
106
, pp.
321
339
.
47.
Labossiere, P. E. W., Dunn, M. L., and Cunningham, S. J., 2001, “Application of Bimaterial Interface Corner Failure Mechanics to Silicon/Glass Anodic Bonds,” J. Mech. Phys. Solids, in press.
48.
Brakke, K. A., 1994, Surface Evolver Manual, Version 1.94, University of Minnesota Press, Minneapolis, MN 55454.
49.
Su, B., 2000, “GaAs Die Crack Initiation in Area Array Electronic Packages,” Ph.D. Dissertation, University of Colorado at Boulder.
50.
Zak
,
A. R.
,
1972
, “
Elastic Analysis of Cylindrical Configurations With Stress Singularities
,”
J. Appl. Mech.
,
39
, pp.
501
506
.
51.
Su
,
B.
,
Labossiere
,
P. E. W.
,
Dunn
,
M. L.
, and
Lee
,
Y. C.
,
1999
, “
Gallium Arsenide/Gold Flip-Chip Connection Stress Fields
,”
Adv. Electron. Circuit Packag.
,
26
, pp.
2037
2045
.
52.
Brantley
,
W. A.
,
1973
, “
Calculated Elastic Constants for Stress Problems Associated With Semiconductor Devices
,”
J. Appl. Phys.
,
44
, pp.
534
535
.
53.
Dempsey
,
J. P.
,
1995
, “
Power-Logarithmic Stress Singularities at Bimaterial Corners and Interface Cracks
,”
J. Adhes. Sci. Technol.
,
9
, pp.
253
265
.
You do not currently have access to this content.