A simple model for the start-up of a proton exchange membrane fuel cell stack is proposed. The model covers a wide temperature range from temperatures below the freezing point of water to usual operation temperatures of a low-temperature fuel cell. Model equations are derived from first principles. They account for the effects of ice and liquid water on the stack behavior. The model is validated by experimental data published by Schießwohl [2009, “Experimental Investigation of Parameters Influencing the Freeze Start Ability of a Fuel Cell System,” J. Power Sources, 193(1), pp. 107–115.], and a good qualitative agreement is found. The applicability of the model to problems of operation strategies and stack design is demonstrated by simulation studies.

1.
Schießwohl
,
E.
,
von Unwerth
,
T.
,
Seyfried
,
F.
, and
Brüggemann
,
D.
, 2009, “
Experimental Investigation of Parameters Influencing the Freeze Start Ability of a Fuel Cell System
,”
J. Power Sources
0378-7753,
193
(
1
), pp.
107
115
.
2.
Ziegler
,
C.
,
Yu
,
H.
, and
Schumacher
,
J.
, 2005, “
Two-Phase Dynamic Modeling of the PEMFC and Simulation of Cyclo-Voltammograms
,”
J. Electrochem. Soc.
0013-4651,
152
(
8
), pp.
A1555
A1567
.
3.
Acosta
,
M.
,
Merten
,
C.
,
Eigenberger
,
G.
,
Class
,
H.
,
Helmig
,
R.
,
Thoben
,
B.
, and
Müller-Steinhagen
,
H.
, 2006, “
Modeling Non-Isothermal Two-Phase Multicomponent Flow in the Cathode of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
159
(
2
), pp.
1123
1141
.
4.
Wu
,
H.
,
Berg
,
P.
, and
Li
,
X.
, 2007, “
Non-Isothermal Transient Modeling of Water Transport in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
165
(
1
), pp.
232
243
.
5.
Grötsch
,
M.
, and
Mangold
,
M.
, 2008, “
A Two-Phase PEMFC Model for Process Control Purposes
,”
Chem. Eng. Sci.
0009-2509,
63
(
2
), pp.
434
447
.
6.
Khandelwal
,
M.
,
Lee
,
S.
, and
Mench
,
M.
, 2009, “
Model to Predict Temperature and Capillary Pressure Driven Water Transport in PEFCs After Shutdown
,”
J. Electrochem. Soc.
0013-4651,
156
(
6
), pp.
B703
B715
.
7.
Oszcipok
,
M.
,
Hakenjos
,
A.
,
Riemann
,
D.
, and
Hebling
,
C.
, 2007, “
Start Up and Freezing Processes in PEM Fuel Cells
,”
Fuel Cells
0532-7822,
7
, pp.
135
141
.
8.
Meng
,
H.
, 2008, “
A PEM Fuel Cell Model for Cold-Start Simulations
,”
J. Power Sources
0378-7753,
178
, pp.
141
150
.
9.
Meng
,
H.
, 2008, “
Numerical Analyses of Non-Isothermal Self-Start Behaviors of PEM Fuel Cells From Subfreezing Startup Temperatures
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
5738
5747
.
10.
Sundaresan
,
M.
, and
Moore
,
R.
, 2005, “
Polymer Electrolyte Fuel Cell Stack Thermal Model to Evaluate Sub-Freezing Startup
,”
J. Power Sources
0378-7753,
145
, pp.
534
545
.
11.
Ahluwalia
,
R.
, and
Wang
,
X.
, 2006, “
Rapid Self-Start of Polymer Electrolyte Fuel Cell Stacks From Subfreezing Temperatures
,”
J. Power Sources
0378-7753,
162
, pp.
502
512
.
12.
Khandelwal
,
M.
,
Lee
,
S.
, and
Mench
,
M.
, 2007, “
One-Dimensional Thermal Model of Cold-Start in a Polymer Electrolyte Fuel Cell Stack
,”
J. Power Sources
0378-7753,
172
, pp.
816
830
.
13.
Mao
,
L.
, and
Wang
,
C.
, 2007, “
Analysis of Cold Start in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B139
B146
.
14.
Jiao
,
K.
, and
Li
,
X.
, 2009, “
Effects of Various Operating and Initial Conditions on Cold Start Performance of Polymer Electrolyte Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
34
, pp.
8171
8184
.
15.
Piewek
,
S.
, 2008, “
Simulation zur Untersuchung des Frostverhaltens einers Polymermembran-Brennstoffzellensystems kleiner Leistungen
,” Master thesis, Otto-von-Guericke-Universität, Magdeburg.
16.
Pischinger
,
S.
,
Schönfelder
,
C.
, and
Ogrzewalla
,
J.
, 2006, “
Analysis of Dynamic Requirements for Fuel Cell Systems for Vehicle Applications
,”
J. Power Sources
0378-7753,
154
(
2
), pp.
420
427
.
You do not currently have access to this content.