This study presents a complete three-dimensional, two-phase transport model for proton exchange membrane fuel cells based on the two-fluid method, which couples the mass, momentum, species, and electrical potential equations. The different liquid water transport mechanisms in the flow channels, gas diffusion layers, catalyst layers, and membrane are modeled using two different liquid water transport equations. In the flow channels, gas diffusion layers, and catalyst layers, the generalized Richards equation is used to describe the liquid water transport including the effect of the pressure gradient, capillary diffusion, evaporation and condensation, and electro-osmotic, while in the membrane, the liquid water transport equation only takes into account the effect of back diffusion and electro-osmotic. Springer’s model is utilized on the catalyst layer-membrane interface to maintain continuum of the liquid water distribution. The model is used to investigate the effect of flow channel aspect ratio on the performance of fuel cells with single and triple serpentine flow fields. The predictions show that for both flow fields, the cell performance improves with decreasing aspect ratio. The aspect ratio has less effect on the cell performance for the triple serpentine flow field than for the single serpentine flow field due to the weaker under-rib convection.

1.
Springer
,
T. E.
,
Zawodinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel-Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
2.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1993, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
3513
3526
.
3.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical-Model of a Gas-Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
, pp.
1151
1163
.
4.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical-Model of the Solid-Polymer-Electrolyte Fuel-Cell
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2477
2491
.
5.
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1218
1225
.
6.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
2178
2186
.
7.
Gurau
,
V.
,
Liu
,
H.
, and
Kakac
,
S.
, 1998, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
0001-1541,
44
, pp.
2410
2422
.
8.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1998, “
An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
1149
1159
.
9.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1999, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
38
45
.
10.
Gu
,
W. B.
,
Wang
,
C. Y.
, and
Liaw
,
B. Y.
, 1997, “
Numerical Modeling of Coupled Electrochemical and Transport Processes in Lead-Acid Batteries
,”
J. Electrochem. Soc.
0013-4651,
144
, pp.
2053
2061
.
11.
Um
,
S.
, and
Wang
,
C. Y.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
4485
4493
.
12.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
106
, pp.
284
294
.
13.
Kulikovsky
,
A. A.
, 2003, “
Quasi-3D Modeling of Water Transport in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1432
A1439
.
14.
Ge
,
S. H.
, and
Yi
,
B. L.
, 2003, “
A Mathematical Model for PEMFC in Different Flow Modes
,”
J. Power Sources
0378-7753,
124
, pp.
1
11
.
15.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
von Spakovsky
,
M. R.
, 2003, “
Single Domain PEMFC Model Based on Agglomerate Catalyst Geometry
,”
J. Power Sources
0378-7753,
132
, pp.
127
134
.
16.
Mazumder
,
S.
, and
Cole
,
J. V.
, 2003, “
Rgorous 3-D Mathematical Modeling of PEM Fuel Cells: I. Model Predictions Without Liquid Water Transport
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1503
A1509
.
17.
Mazumder
,
S.
, and
Cole
,
J. V.
, 2003, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells: II. Model Predictions With Liquid Water Transport
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1510
A1517
.
18.
Tao
,
W. Q.
,
Min
,
C. H.
,
Liu
,
X. L.
,
He
,
Y. L.
,
Yin
,
B. H.
, and
Jiang
,
W.
, 2006, “
Parameter Sensitivity Examination and Discussion of PEM Fuel Cell Simulation Model Validation: I. Current Status of Modeling Research and Model Development
,”
J. Power Sources
0378-7753,
160
, pp.
359
373
.
19.
Hwang
,
J. J.
, 2007, “
A Complete Two-Phase Model of a Porous Cathode of a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
164
, pp.
174
181
.
20.
Meng
,
H.
, 2007, “
A Two-Phase Non-Isothermal Mixed-Domain PEM Fuel Cell Model and Its Application to Two-Dimensional Simulations
,”
J. Power Sources
0378-7753,
168
, pp.
218
228
.
21.
Meng
,
H.
, 2007, “
A Three-Dimensional Mixed-Domain PEM Fuel Cell Model With Fully-Coupled Transport Phenomena
,”
J. Power Sources
0378-7753,
164
, pp.
688
696
.
22.
Meng
,
H.
, 2006, “
A Three-Dimensional PEM Fuel Cell Model With Consistent Treatment of Water Transport in MEA
,”
J. Power Sources
0378-7753,
162
, pp.
426
435
.
23.
Nguyen
,
T. V.
, 1996, “
A Gas Distributor Design for Proton Exchange Membrane Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
143
, pp.
L103
L105
.
24.
He
,
W.
,
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 2000, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
0001-1541,
46
, pp.
2053
2064
.
25.
West
,
A. C.
, and
Fuller
,
T. F.
, 1996, “
Influence of Rib Spacing in Proton-Exchange Membrane Electrode Assemblies
,”
J. Appl. Electrochem.
0021-891X,
26
, pp.
557
565
.
26.
Kazim
,
A.
,
Liu
,
H. T.
, and
Forges
,
P.
, 1999, “
Modelling of Performance of PEM Fuel Cells With Conventional and Interdigitated Flow Fields
,”
J. Appl. Electrochem.
0021-891X,
29
, pp.
1409
1416
.
27.
Hu
,
M.
,
Gu
,
A.
,
Wang
,
M.
,
Zhu
,
X.
, and
Yu
,
L.
, 2004, “
Three Dimensional Two Phase Flow Mathematical Model for PEM Fuel Cell: II. Analysis and Discussion of the Internal Transport Mechanism
,”
Energy Convers. Manage.
0196-8904,
45
, pp.
1883
1916
.
28.
Wang
,
X. D.
,
Duan
,
Y. Y.
, and
Yan
,
W. M.
, 2007, “
Numerical Study of Cell Performance and Local Transport Phenomena in PEM Fuel Cells With Various Flow Channel Area Ratios
,”
J. Power Sources
0378-7753,
172
, pp.
265
277
.
29.
Liu
,
H. C.
,
Yan
,
W. M.
, and
Wang
,
X. D.
, 2007, “
Effects of Flow Channel Area Ratio on Local Transport Characteristics and Cell Performance of 3D PEMFCs
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B1338
B1348
.
30.
Cha
,
S. W.
,
O’ Hayre
,
R.
,
Satio
,
Y.
, and
Prinz
,
F. B.
, 2004, “
The Scaling Behavior of Flow Patterns: A Model Investigation
,”
J. Power Sources
0378-7753,
134
, pp.
57
71
.
31.
Liu
,
H. C.
,
Yan
,
W. M.
,
Soong
,
C. Y.
, and
Chen
,
F.
, 2005, “
Effects of Baffle-Blocked Flow Channel on Reactant Transport and Cell Performance of a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
142
, pp.
125
133
.
32.
Shimpalee
,
S.
,
Greenway
,
S.
, and
Van Zee
,
J. W.
, 2006, “
The Impact of Channel Path Length on PEMFC Flow-Field Design
,”
J. Power Sources
0378-7753,
160
, pp.
398
406
.
33.
Kumar
,
A.
, and
Reddy
,
R. G.
, 2006, “
Effect of Gas Flow-Field Design in the Bipolar/End Plates on the Steady and Transient State Performance of Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
155
, pp.
264
271
.
34.
Yan
,
W. M.
,
Li
,
H. Y.
, and
Tsai
,
W. C.
, 2006, “
Three-Dimensional Analysis of PEMFCs With Different Flow Channel Designs
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A1984
A1991
.
35.
Liu
,
H. C.
,
Yan
,
W. M.
,
Soong
,
C. Y.
,
Chen
,
F.
, and
Chu
,
H. S.
, 2006, “
Reactant Gas Transport and Cell Performance of Proton Exchange Membrane Fuel cells with tapered flow field design
,”
J. Power Sources
0378-7753,
158
, pp.
78
87
.
36.
Yan
,
W. M.
,
Liu
,
H. C.
,
Soong
,
C. Y.
,
Chen
,
F.
, and
Cheng
,
C. H.
, 2006, “
Numerical Study on Cell Performance and Local Transport Phenomena of PEM Fuel Cells With Novel Flow Field Designs
,”
J. Power Sources
0378-7753,
161
, pp.
907
919
.
37.
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2007, “
Numerical Studies on Rib & Channel Dimension of Flow-Field on PEMFC Performance
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
842
856
.
38.
Wang
,
X. D.
,
Duan
,
Y. Y.
, and
Yan
,
W. M.
, 2007, “
Novel Serpentine-Baffle Flow Field Design for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
173
, pp.
210
221
.
39.
Yang
,
H.
, and
Zhao
,
T. S.
, 2005, “
Effect of Anode Flow Field Design on the Performance of Liquid Feed Direct Methanol Fuel Cells
,”
Electrochim. Acta
0013-4686,
50
, pp.
3243
3252
.
40.
Xu
,
C.
, and
Zhao
,
T. S.
, 2007, “
A New Flow Field Design for Polymer Electrolyte-Based Fuel Cells
,”
Electrochem. Commun.
1388-2481,
9
, pp.
497
503
.
41.
Wang
,
X. D.
,
Duan
,
Y. Y.
,
Yan
,
W. M.
, and
Peng
,
X. F.
, 2008, “
Local Transport Phenomena and Cell Performance of PEM Fuel Cells With Various Serpentine Flow Field Designs
,”
J. Power Sources
0378-7753,
175
, pp.
397
407
.
42.
Yan
,
W. M.
,
Li
,
H. Y.
,
Chiu
,
P. C.
, and
Wang
,
X. D.
, 2008, “
Effects of Serpentine Flow Field With Outlet Channel Contraction on Cell Performance of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
178
, pp.
174
180
.
43.
Wang
,
X. D.
,
Duan
,
Y. Y.
,
Yan
,
W. M.
, and
Peng
,
X. F.
, 2008, “
Effects of Flow Channel Geometry on Cell Performance for PEM Fuel Cells With Parallel and Interdigitated Flow Fields
,”
Electrochim. Acta
0013-4686,
53
, pp.
5334
5343
.
44.
Kanezaki
,
T.
,
Li
,
X.
, and
Baschuk
,
J. J.
, 2006, “
Cross-Leakage Flow Between Adjacent Flow Channels in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
162
, pp.
415
425
.
45.
Dullien
,
F. A. L.
, 1991,
Porous Media
,
Academic
,
New York
.
46.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Two-Phase Transport and the Role of Micro-Porous Layer in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
49
, pp.
4359
4369
.
47.
Yan
,
W. M.
,
Yang
,
C. H.
,
Soong
,
C. Y.
,
Chen
,
F.
, and
Mei
,
S. C.
, 2006, “
Experimental Studies on Optimal Operating Conditions for Different Flow Field Designs of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
160
, pp.
284
292
.
You do not currently have access to this content.