The compound Bi2V0.9Cu0.1O5.35, a typical Aurivillius-type fast oxygen ion conductor, was evaluated as a possible cathode material for single-chamber solid-oxide fuel cells operated under mixed propane and oxygen. The material was found to be structurally stable under various C3H8+O2 environments over a wide temperature range and furthermore displayed low catalytic activity for propane oxidation. However, at temperatures above 650°C, detrimental reactions between the cathode and the ceria electrolyte occurred, producing low conductivity interfacial phases. At these high temperatures the cathode additionally underwent extensive sintering and loss of porosity and, thus, stable fuel cell operation was limited to furnace temperatures of <600°C. Even under such conditions, however, the partial oxidation occurring at the anode (a ceria nickel cermet) resulted in cell temperatures as much as 70110°C higher than the gas-phase temperature. This explains the sharp decrease in fuel cell performance with time during operation at a furnace temperature of 586°C. Under optimized conditions, a peak power density of 60mW/cm2 was obtained, which does not compete with recent values obtained from higher activity cathodes. Thus, the poor electrochemical activity of Bi2V0.9Cu0.1O5.35, combined with its chemical instability at higher temperatures, discourages further consideration of this material as a cathode in single-chamber fuel cells.

1.
Hibino
,
T.
,
Hashimoto
,
A.
,
Inoue
,
T.
,
Tokuno
,
J.
,
Yoshida
,
S.
, and
Sano
,
M.
, 2000, “
A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures
,”
Science
0036-8075,
288
, pp.
2031
2033
.
2.
Dyer
,
C. K.
, 1990, “
A Novel Thin-Film Electrochemical Device for Energy Conversion
,”
Nature (London)
0028-0836,
343
, pp.
547
548
.
3.
Yano
,
M.
,
Tomita
,
A.
,
Sano
,
M.
, and
Hibino
,
T.
, 2007, “
Recent Advances in Single-Chamber Solid Oxide Fuel Cells: A Review
,”
Solid State Ionics
0167-2738,
177
, pp.
3351
3359
.
4.
Shao
,
Z. P.
,
Haile
,
S. M.
,
Ahn
,
J.
,
Ronney
,
P. D.
,
Zhan
,
Z. L.
, and
Barnett
,
S. A.
, 2005, “
A Thermally Self-Sustained Micro Solid-Oxide Fuel-Cell Stack With High Power Density
,”
Nature (London)
0028-0836,
435
, pp.
795
798
.
5.
Hao
,
Y.
,
Shao
,
Z. P.
,
Mederos
,
J.
,
Lai
,
W.
,
Goodwin
,
D. G.
, and
Haile
,
S. M.
, 2006, “
Recent Advances in Single-Chamber Fuel-Cells: Experiment and Modeling
,”
Solid State Ionics
0167-2738,
177
, pp.
2013
2021
.
6.
Shao
,
Z. P.
, and
Haile
,
S. M.
, 2004, “
A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells
,”
Nature (London)
0028-0836,
431
, pp.
170
173
.
7.
Shao
,
Z. P.
,
Mederos
,
J.
,
Chueh
,
W. C.
, and
Haile
,
S. M.
, 2006, “
High Power-Density Single-Chamber Fuel Cells Operated on Methane
,”
J. Power Sources
0378-7753,
162
, pp.
589
596
.
8.
Aurivillius
,
B.
, 1951, “
Mixed Oxides With Layer Lattices. 3. Structure of BaBi4Ti4O15
,”
Ark. Kemi
0365-6128,
2
, pp.
519
527
.
9.
Aurivillius
,
B.
, 1950, “
Mixed Bismuth Oxides With Layer Lattices. 2. Structure of Bi4Ti3O12
,”
Ark. Kemi
0365-6128,
1
, pp.
499
512
.
10.
Aurivillius
,
B.
, 1950, “
Mixed Bismuth Oxides With Layer Lattices. 1. The Structure Type of CaNb2Bi2O9
,”
Ark. Kemi
0365-6128,
1
, pp.
463
480
.
11.
Abraham
,
F.
,
Debreuille-Gresse
,
M. F.
,
Mairesse
,
G.
, and
Nowogrocki
,
G.
, 1988, “
Phase Transitions and Ionic Conductivity in Bi4V2O11 an Oxide With a Layered Structure
,”
Solid State Ionics
0167-2738,
28–30
, pp.
529
532
.
12.
Kendall
,
K. R.
,
Navas
,
C.
,
Thomas
,
J. K.
, and
Zurloye
,
H. C.
, 1996, “
Recent Developments in Oxide Ion Conductors: Aurivillius Phases
,”
Chem. Mater.
0897-4756,
8
, pp.
642
649
.
13.
Abraham
,
F.
,
Boivin
,
J. C.
,
Mairesse
,
G.
, and
Nowogrocki
,
G.
, 1990, “
The Bimevox Series: A New Family of High Performances Oxide Ion Conductors
,”
Solid State Ionics
0167-2738,
40–41
, pp.
934
937
.
14.
Boivin
,
J. C.
, and
Mairesse
,
G.
, 1998, “
Recent Material Developments in Fast Oxide Ion Conductors
,”
Chem. Mater.
0897-4756,
10
, pp.
2870
2888
.
15.
Goodenough
,
J. B.
,
Manthiram
,
A.
,
Paranthaman
,
P.
, and
Zhen
,
Y. S.
, 1992, “
Fast Oxide-Ion Conduction in Intergrowth Structures
,”
Solid State Ionics
0167-2738,
52
, pp.
105
109
.
16.
Xia
,
C. R.
, and
Liu
,
M. L.
, 2002, “
Novel Cathodes for Low-Temperature Solid Oxide Fuel Cells
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
14
, pp.
521
523
.
17.
Shao
,
Z. P.
,
Yang
,
W. S.
,
Cong
,
Y.
,
Dong
,
H.
,
Tong
,
J. H.
, and
Xiong
,
G. X.
, 2000, “
Investigation of the Permeation Behavior and Stability of a Ba0.5Sr0.5Co0.8Fe0.2O3–δ Oxygen Membrane
,”
J. Membr. Sci.
0376-7388,
172
, pp.
177
188
.
18.
Shao
,
Z. P.
,
Kwak
,
C.
, and
Haile
,
S. M.
, 2004, “
Anode-Supported Thin-Film Fuel Cells Operated in a Single Chamber Configuration 2T-I-12
,”
Solid State Ionics
0167-2738,
175
, pp.
39
46
.
19.
Watanabe
,
A.
, and
Das
,
K.
, 2002, “
Time-Dependent Degradation Due to the Gradual Phase Change in BICUVOX and BICOVOX Oxide-Ion Conductors at Temperatures Below About 500°C
,”
J. Solid State Chem.
0022-4596,
163
, pp.
224
230
.
20.
Dygas
,
J. R.
,
Kurek
,
P.
, and
Breiter
,
M. W.
, 1995, “
Structure-Dependent Impedance of BICUVOX
,”
Electrochim. Acta
0013-4686,
40
, pp.
1545
1550
.
21.
Watanabe
,
A.
, 1997, “
Bi23M4O44.5 (M=P and V): New Oxide-Ion Conductors With Triclinic Structure Based on a Pseudo-Fcc Subcell
,”
Solid State Ionics
0167-2738,
96
, pp.
75
81
.
22.
Watanabe
,
A.
, 2001, “
Preparation and Characterization of a New Triclinic Compound Bi3.5V1.2O8.25 to Show the Known Phase Bi4V2O11 to be Nonexistent as a Single Phase
,”
J. Solid State Chem.
0022-4596,
161
, pp.
410
415
.
23.
Pang
,
G. S.
,
Feng
,
S. H.
,
Tang
,
Y. C.
,
Tan
,
C. H.
, and
Xu
,
R. R.
, 1998, “
Hydrothermal Synthesis, Characterization, and Ionic Conductivity of Vanadium-Stabilized Bi17V3O33 With Fluorite-Related Superlattice
,”
Chem. Mater.
0897-4756,
10
, pp.
2446
2449
.
24.
Wrobel
,
W.
,
Krok
,
F.
,
Abrahams
,
I.
,
Kozanecka-Szmigiel
,
A.
,
Malys
,
M.
,
Chan
,
S. C. M.
, and
Dygas
,
J. R.
, 2006, “
Bi8V2O17 – a Stable Phase in the Bi2O3-V2O5 System
,”
Mater. Sci. (Poland)
0137-1339,
24
, pp.
23
30
.
25.
Mauvy
,
F.
,
Launay
,
J. C.
, and
Darriet
,
J.
, 2005, “
Synthesis, Crystal Structures and Ionic Conductivities of Bi14P4O31 and Bi50V4O85. Two Members of the Series Bi18–4mM4mO27+4m (M=P, V) Related to the Fluorite-Type Structure
,”
J. Solid State Chem.
0022-4596,
178
, pp.
2015
2023
.
26.
Turkoglu
,
O.
, and
Belenli
,
I.
, 2003, “
Electrical Conductivity of γ-Bi2O3-V2O5 Solid Solution
,”
J. Therm Anal. Calorim.
1418-2874,
73
, pp.
1001
1012
.
27.
Watanabe
,
A.
, 2000, “
Highly Conductive Oxides, CeVO4, Ce1–xMxVO4–0.5x (M=Ca, Sr, Pb) and Ce1–yBiyVO4, With Zircon-Type Structure Prepared by Solid-State Reaction in Air
,”
J. Solid State Chem.
0022-4596,
153
, pp.
174
179
.
28.
Hibino
,
T.
,
Hashimoto
,
A.
,
Inoue
,
T.
,
Tokuno
,
J.
,
Yoshida
,
S.
, and
Sano
,
M.
, 2001, “
A Solid Oxide Fuel Cell Using an Exothermic Reaction as the Heat Source
,”
J. Electrochem. Soc.
0013-4651,
148
, pp.
A544
A549
.
29.
Inaba
,
H.
, and
Tagawa
,
H.
, 1996, “
Ceria-Based Solid Electrolytes
,”
Solid State Ionics
0167-2738,
83
, pp.
1
16
.
You do not currently have access to this content.