Increasing energy demands, limited resources, pollutants, and CO2-emissions caused by the use of fossil fuels require a more efficient and sustainable energy production. Due to their high electrical efficiencies as well as fuel and application flexibilities, high temperature fuel cells offer great potential to meet the demands of the future energy supply. The fuel gases hydrogen and carbon monoxide, which are electrochemically convertible in solid oxide fuel cells (SOFCs), have to be generated by reformation or gasification of hydrocarbons, or in the case of pure hydrogen, as fuel gas, by electrolysis. For these generating processes energy is required. This generally leads to a deterioration of SOFC-system efficiencies. At state of the art combined processes, the reformation or gasification reactor and the SOFC are usually separated. The heat required for the endothermic reforming is generated by partial oxidation (POx) of the supplied fuel or by using the waste heat of the exhaust gases. At the Institute for Heat- and Fuel-Technology of the Technische Universität Braunschweig, an innovative planar SOFC-stack-design with indirect internal reforming and without bipolar plates was developed. Due to the thermal and material couplings, the SOFC-waste heat can be directly used to supply the endothermic reforming process. Additionally, a part of the hot anode off-gas, consisting mainly of water vapor, is recycled as a reforming agent. Therefore, based on the principle of the chemical heat pump, depending on the fuel used, system efficiencies of more than 60% can be achieved, even though the SOFC itself reached only an electrical efficiency of approximately 50%. Additionally, due to the cascaded SOFC structure resulting in high fuel utilization, postcombustion of the waste gases is no longer necessary. Because of the SOFC membrane allowing only an oxygen-ion flow and thus representing an air separation unit and the SOFC design without the mixing of anode and cathode flows, a simple CO2-separation can be realized by condensing the water vapor out of the anode off-gas. Another advantage of the newly developed stack design is its parallel interconnection, which leads to higher reliability concerning single stack levels. The aim of the work was a first dimensioning of the new stack design for natural gas as a fuel and its energetical analysis concerning operation and feasibility. With the simulation program developed, the theoretical feasibility of the concept and a high electrical efficiency of about 60% were proven.

1.
Leithner
,
R.
, 2007, “
Combined Cycles for CO2-Capture With High Efficiency
,”
International Journal of Energy Technology and Policy
,
5
(
3
), pp.
340
354
.
2.
Araki
,
T.
,
Taniuchi
,
T.
,
Sunakawa
,
D.
,
Nagahama
,
M.
,
Onda
,
K.
, and
Kato
,
T.
, 2007, “
Cycle Analysis of Low and High H2 Utilization SOFC/Gas Turbine Combined Cycle for CO2 Recovery
,”
J. Power Sources
,
171
(
2
), pp.
464
470
. 0378-7753
3.
Leithner
,
R.
, and
Schlitzberger
,
C.
, 2007, “
Verfahren zum Betrieb und Konstruktion einer SOFC mit integrierten Wärmetauschern, integrierter Reformierung oder Vergasung, integrierter Anodenabgasrückführung und integrierter Wärmeauskopplung
,” Patenanmeldung DE 10 2007 015 079.4.
4.
Schlitzberger
,
C.
, 2006, “
Simulation von Solid Oxide Fuel Cells mit integrierter Reformierung
,” Institut für Wärme-und Brennstofftechnik (IWBT) der TU Braunschweig, in German.
5.
Knoche
,
K. F.
, and
Richter
,
H.
, 1968, “
Verbesserung der Reversibilität von Verbrennungsprozessen
,”
Brennst.-Waerme-Kraft
0006-9612,
20
(
5
), pp.
205
210
.
6.
Leithner
,
R.
, 2004, “
Brennstoffzellen mit integrierter Vergasung
,” Patentanmeldung DE 103 00 466.1.
7.
Leithner
,
R.
, 2004, “
Brennstoffzelle mit integrierter Vergasung oder Reformierung
,” Patentanmeldung DE 103 05 806.0.
8.
Heinzel
,
A.
, 2003, “
Problemstellung, Chancen und Risiken von Brennstoffzellen APU’s
,”
Proceedings of the Fachforum Brennstoffzelle—Entwickler und Anwender berichten
, Berlin, Germany.
9.
Winkler
,
W.
, 2002,
Brennstoffzellenanlagen
,
Springer-Verlag
, Berlin, in German.
10.
Travis
,
R.
, and
Bernardi
,
D.
, 2007, “
Towards a 1 MW Pressurized Fuel Cell System
,”
Fifth International ASME Fuel Cell Science, Engineering & Technology Conference
, New York.
11.
Bernadi
,
D.
,
Tripepi
,
D.
, and
Massardo
,
A. F.
, 2007, “
Experimentally Validated CFD Model of an Integrated Planar Solid Oxide Fuel Cell (IP-SOFC) Module
,”
Fifth International ASME Fuel Cell Science, Engineering & Technology Conference
, New York.
12.
Steinberger-Wilckens
,
R.
,
Vinke
,
I. C.
,
Blum
,
L.
,
Remmel
,
J.
,
Tietz
,
F.
, and
Quadakkers
,
W. J.
, 2004, “
Progress in SOFC Stack Development at Forschungszentrum Jülich
,”
European SOFC Forum 2004
, Luzern.
13.
Katikaneni
,
S.
,
Yuh
,
C.
,
Abens
,
S.
, and
Farooque
,
M.
, 2002, “
The Direct Carbonate Fuel Cell Technology: Advances in Multi-Fuel Processing and Internal Reforming
,”
Catal. Today
,
77
(
1–2
), pp.
99
106
. 0885-0046
14.
Ma
,
Z.
,
Venkataraman
,
R.
, and
Farooque
,
M.
, 2007, “
High Power Internal Reforming Direct, Carbonate Fuel Cell Stack Development through Mathematical Modelling and Engineering Optimization
,”
Fifth International ASME Fuel Cell Science, Engineering & Technology Conference
, New York.
15.
Draper
,
R.
, and
Zafred
,
G.
, 2007, “
Application of a Centrifugal Circulator for Anode Gas Recirculation in a 5 kWe SOFC Generator
,”
Fifth International ASME Fuel Cell Science, Engineering & Technology Conference
, New York.
16.
Leithner
,
R.
, 2004, “
Struktur eines SOFC-Stapels
,” Patentanmeldung DE 102 00 401 566 0A1.
17.
Nether
,
P.
, 2007, “
A High Fuel Utilizing Solid Oxide Fuel Cell Cycle With Regard to the Formation of Nickel Oxide and Power Density
,”
J. Power Sources
,
164
, pp.
252
259
. 0378-7753
18.
Zindler
,
H.
,
Leithner
R.
, and
Witkowski
A.
, 2006, “
Combining FVM and PECE Algorithms With Adjoint Methods for the Dynamical Simulation of Power Plants
,”
WSEAS International Conference on Heat Transfer
, Agios Nikolaos, Kreta, Griechenland.
19.
Bronstein
,
I. N.
,
Semenddjajew
,
K. A.
,
Musiol
,
G.
, and
Mühlig
,
H.
, 2001,
Taschenbuch der Mathematik
,
Verlag Harri Deutsch
,
Frankfurt am Main
, in German.
20.
Achenbach
,
E.
, and
Rechenauer
,
C.
, 1996,
Dreidimensionale mathematische Modellierung des stationären und instationären Verhaltens oxidkeramischer Hochtemperatur-Brennstoffzellen
,
Publikation Forschungszentrum Jülich
,
Jülich
, in German.
21.
Lokurlu
,
A.
, 1999, “
Simulation der Oxid-keramischen Brennstoffzellen ‘SOFC’ mit nachgeschalteten Gas-und Dampfturbinen-Kombi-Anlagen für verschiedene Brenngase
,” Fortschritt-Berichte VDI Reihe 6 Nr. 425.
22.
Selimovic
,
A.
, 2000,
Solid Oxide Fuel Cell Modelling for SOFC/Gas Turbine Combined Cycle Simulations
,
Department of Heat and Power Engineering Lund Institute of Technology
,
Lund
.
23.
Gordon
,
S.
and
McBride
,
B. J.
, 1994, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications
,” NASA Reference Publication 1311.
24.
Beitz
,
W.
, 1981,
Dubbel—Taschenbuch für den Maschinenbau
,
Springer-Verlag
,
Berlin
, in German.
25.
Drescher
,
I.
, 1999, “
Kinetik der Methan-Dampf-Reformierung
,” doctoral thesis, Forschungszentrum Jülich, Jülich.
26.
Wagner
,
W.
, 1999,
Wärmeaustauscher
,
Vogel-Verlag
,
Würzburg
, in German.
You do not currently have access to this content.