Abstract

The most studied molten carbonate-direct lignin fuel cell (MC-LFC) or molten carbonate-direct carbon fuel cell (MC-DCFC) prototypes are those which are fed by fossil fuel. Substituting these fossilized fuels in the MC-DCFC operation with lignin, which is a bio-based carbon, may make this system more efficient, clean, and sustainable. The manipulation module (Mixture) and the computational module (Equilib) of the FactSage package were used to simulate two systems that can represent the anodic compartment of a direct carbon fuel cell based on MC-DCFC. The first system includes lignin and a mixture of molten carbonate (Li2CO3-Na2CO3-Cs2CO3). The second system uses also lignin and a mixture of molten carbonate (Li2CO3-Na2CO3-Cs2CO3) and CO2 gas was also added. The results show the formation of mixed gases in the anodic compartment which are composed of H2, CO, CO2, CH4, and H2O. The relative concentration of each of the species of this mixed gas has an impact on the efficiency of the MC-DCFC. How the relative concentration of these gases in this electrolyte can impact the performance parameters of the MC-DCFC is systematically analyzed. If the operating conditions of the fuel cell are optimized to get a gas composition of mainly CO2 with low amounts of H2, CO, CH4, and H2O in the anode compartment of the MC-DCFC, this will help to improve the conversion efficiency of lignin fuel in the MC-DCFC.

References

1.
Brouwer
,
J.
,
Jabbari
,
F.
,
Leal
,
E. M.
, and
Orr
,
T.
,
2006
, “
Analysis of a Molten Carbonate Fuel Cell: Numerical Modeling and Experimental Validation
,”
J. Power Sources
,
158
(
1
), pp.
213
224
.
2.
Srinivasan
,
S.
,
2006
,
Fuel Cells: From Fundamentals to Applications
,
Springer Science & Business Media
.
3.
Kordesch
,
K. V.
, and
Simader
,
G. R.
,
1995
, “
Environmental Impact of Fuel Cell Technology
,”
Chem. Rev.
,
95
(
1
), pp.
191
207
.
4.
Lima
,
R. B.
,
Raza
,
R.
,
Qin
,
H.
,
Li
,
J.
,
Lindström
,
M. E.
, and
Zhu
,
B.
,
2013
, “
Direct Lignin Fuel Cell for Power Generation
,”
RSC Adv.
,
3
(
15
), pp.
5083
5089
.
5.
Wu
,
H.
,
Xiao
,
J.
,
Zeng
,
X.
,
Li
,
X.
,
Yang
,
J.
,
Zou
,
Y.
, and
Liu
,
J.
,
2019
, “
A High Performance Direct Carbon Solid Oxide Fuel Cell–A Green Pathway for Brown Coal Utilization
,”
Appl. Energy
,
248
, pp.
679
687
.
6.
Demirdoven
,
N.
, and
Deutch
,
J.
,
2004
, “
Hybrid Cars Now, Fuel Cell Cars Later
,”
Science
,
305
(
5686
), pp.
974
976
.
7.
Agnew
,
G. D.
,
Collins
,
R. D.
,
Jörger
,
M. B.
,
Pyke
,
S. H.
, and
Travis
,
R.
,
2007
, “
The Components of a Rolls-Royce 1 MW SOFC System
,”
ECS Trans.
,
7
(
1
), pp.
105
111
.
8.
Aki
,
H.
,
2007
, “
The Penetration of Micro CHP in Residential Dwellings in Japan
,”
2007 IEEE Power Engineering Society General Meeting
,
June
,
IEEE
, pp.
1
4
.
9.
Lee
,
E. K.
,
Park
,
S. A.
,
Jung
,
H. W.
, and
Kim
,
Y. T.
,
2018
, “
Performance Enhancement of Molten Carbonate-Based Direct Carbon Fuel Cell (MC-DCFC) Via Adding Mixed Ionic-Electronic Conductors Into Ni Anode Catalyst Layer
,”
J. Power Sources
,
386
, pp.
28
33
.
10.
Chen
,
M.
,
Wang
,
C.
,
Niu
,
X.
,
Zhao
,
S.
,
Tang
,
J.
, and
Zhu
,
B.
,
2010
, “
Carbon Anode in Direct Carbon Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
(
7
), pp.
2732
2736
.
11.
Kouchachvili
,
L.
, and
Ikura
,
M.
,
2011
, “
Performance of Direct Carbon Fuel Cell
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10263
10268
.
12.
Jiang
,
C.
, and
Irvine
,
J. T.
,
2011
, “
Catalysis and Oxidation of Carbon in a Hybrid Direct Carbon Fuel Cell
,”
J. Power Sources
,
196
(
17
), pp.
7318
7322
.
13.
Eom
,
S.
,
Ahn
,
S.
,
Rhie
,
Y.
,
Kang
,
K.
,
Sung
,
Y.
,
Moon
,
C.
, and
Kim
,
D.
,
2014
, “
Influence of Devolatilized Gases Composition From Raw Coal Fuel in the Lab Scale DCFC (Direct Carbon Fuel Cell) System
,”
Energy
,
74
, pp.
734
740
.
14.
Hao
,
W.
,
He
,
X.
, and
Mi
,
Y.
,
2014
, “
Achieving High Performance in Intermediate Temperature Direct Carbon Fuel Cells With Renewable Carbon as a Fuel Source
,”
Appl. Energy
,
135
, pp.
174
181
.
15.
Thakur
,
V. K.
,
Thakur
,
M. K.
,
Raghavan
,
P.
, and
Kessler
,
M. R.
,
2014
, “
Progress in Green Polymer Composites From Lignin for Multifunctional Applications: A Review
,”
ACS Sustainable Chem. Eng.
,
2
(
5
), pp.
1072
1092
.
16.
Sarlos
,
G.
,
Haldi
,
P. A.
, and
Verstraete
,
P.
,
2003
,
Systèmes énergétiques: offre et demande d'énergie: méthodes d'analyse (Vol. 21)
,
PPUR Presses Polytechniques
.
17.
Zhao
,
X.
, and
Zhu
,
A. J.
,
2016
, “
Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures
,”
ChemSusChem
,
9
(
2
), pp.
197
207
.
18.
Adler
,
E.
,
1977
, “
Lignin Chemistry—Past, Present and Future
,”
Wood Sci. Technol.
,
11
(
3
), pp.
169
218
.
19.
Faulon
,
J. L.
, and
Hatcher
,
P. G.
,
1994
, “
Is There Any Order in the Structure of Lignin?
,”
Energy Fuels
,
8
(
2
), pp.
402
407
.
20.
Bale
,
C. W.
,
Bélisle
,
E.
,
Chartrand
,
P.
,
Decterov
,
S. A.
,
Eriksson
,
G.
,
Gheribi
,
A. E.
, and
Van Ende
,
M. A.
,
2016
, “
Reprint of: FactSage Thermochemical Software and Databases, 2010–2016
,”
Calphad
,
55
, pp.
1
19
.
21.
Widyawati
,
M.
,
Church
,
T. L.
,
Florin
,
N. H.
, and
Harris
,
A. T.
,
2011
, “
Hydrogen Synthesis From Biomass Pyrolysis With In Situ Carbon Dioxide Capture Using Calcium Oxide
,”
Int. J. Hydrogen Energy
,
36
(
8
), pp.
4800
4813
.
22.
Janz
,
G. J.
,
Allen
,
C. B.
,
Downey Jr
,
J. R.
, and
Tomkins
,
R.
,
1976
, EUTECTIC DATA: Safety, Hazards, Corrosion, Melting Points, Compositions, and Bibliography (No. TID-27163-P2). Rensselaer Polytechnic Institute, Troy, NY. Cogswell Lab.
23.
Elleuch
,
A.
,
Yu
,
J.
,
Boussetta
,
A.
,
Halouani
,
K.
, and
Li
,
Y.
,
2013
, “
Electrochemical Oxidation of Graphite in an Intermediate Temperature Direct Carbon Fuel Cell Based on Two-Phases Electrolyte
,”
Int. J. Hydrogen Energy
,
38
(
20
), pp.
8514
8523
.
24.
Wu
,
W.
,
Zhang
,
Y.
,
Ding
,
D.
, and
He
,
T.
,
2018
, “
A High-Performing Direct Carbon Fuel Cell With a 3D Architectured Anode Operated Below 600 C
,”
Adv. Mater.
,
30
(
4
), p.
1704745
.
25.
Giddey
,
S.
,
Badwal
,
S. P. S.
,
Kulkarni
,
A.
, and
Munnings
,
C.
,
2012
, “
A Comprehensive Review of Direct Carbon Fuel Cell Technology
,”
Prog. Energy Combust. Sci.
,
38
(
3
), pp.
360
399
.
26.
Elleuch
,
A.
,
Halouani
,
K.
, and
Li
,
Y.
,
2015
, “
Investigation of Chemical and Electrochemical Reactions Mechanisms in a Direct Carbon Fuel Cell Using Olive Wood Charcoal as Sustainable Fuel
,”
J. Power Sources
,
281
, pp.
350
361
.
27.
Siengchum
,
T.
,
Guzman
,
F.
, and
Chuang
,
S. S.
,
2012
, “
Analysis of Gas Products From Direct Utilization of Carbon in a Solid Oxide Fuel Cell
,”
J. Power Sources
,
213
, pp.
375
381
.
28.
Hemmes
,
K.
, and
Cassir
,
M.
,
2011
, “
A Theoretical Study of the Carbon/Carbonate/Hydroxide (Electro-) Chemical System in a Direct Carbon Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
5
), p.
051005
.
29.
Fuente-Cuesta
,
A.
,
Jiang
,
C.
,
Arenillas
,
A.
, and
Irvine
,
J. T.
,
2016
, “
Role of Coal Characteristics in the Electrochemical Behaviour of Hybrid Direct Carbon Fuel Cells
,”
Energy Environ. Sci.
,
9
(
9
), pp.
2868
2880
.
30.
Tu
,
B.
,
Yin
,
Y.
,
Zhang
,
F.
,
Su
,
X.
,
Lyu
,
X.
, and
Cheng
,
M.
,
2020
, “
High Performance of Direct Methane-Fuelled Solid Oxide Fuel Cell With Samarium Modified Nickel-Based Anode
,”
Int. J. Hydrogen Energy
,
45
(
51
), pp.
27587
27596
.
31.
Murray
,
E. P.
,
Tsai
,
T.
, and
Barnett
,
S. A.
,
1999
, “
A Direct-Methane Fuel Cell With a Ceria-Based Anode
,”
Nature
,
400
(
6745
), pp.
649
651
.
32.
Erdőhelyi
,
A.
,
2021
, “
Catalytic Reaction of Carbon Dioxide With Methane on Supported Noble Metal Catalysts
,”
Catalysts
,
11
(
2
), p.
159
.
33.
Appleby
,
A. J.
, and
Van Drunen
,
C.
,
1980
, “
Solubilities of Oxygen and Carbon Monoxide in Carbonate Melts
,”
J. Electrochem. Soc.
,
127
(
8
), pp.
1655
1659
.
34.
Broers
,
G. H. J.
,
Schenke
,
M.
, and
van Ballegoy
,
H. J. J.
,
1977
, “
Extended Abstract, No. II77
,”
20th ISE Meeting Druzhba
,
Bulgaria
,
January
.
You do not currently have access to this content.