Abstract

The model-based system engineering (MBSE) is based on simplified mathematical models that reflect the dynamic behavior of the systems. These are most of the time nonlinear and need control schemes taking in consideration of exogenous perturbations. The main contribution of this article is the design of a robust passivity-based sliding mode control scheme for a 1.26 KW proton exchange membrane fuel cell (PEMFC). The uncertainties considered in this article are temperature and load variation. The fuel cell (FC) reference current is adapted in a linear transformation by introducing a temperature sensor. This information is present in most of commercial PEMFC and not used in the closed-loop system. Moreover, the proposed approach cancels the errors caused by the average approach modeling and the observer (the part, which replaces current sensor). Robustness against load variation is assured via a proportional integral compensation of the incremental value of load resistance. The performance of the controller and the effectiveness of our approach is shown through the simulation with matlab-simulink software.

References

1.
Nehrir
,
M. H.
, and
Wang
,
C.
,
2009
,
Modeling and Control of Fuel Cells
,
Wiley-IEEE Press
,
New York
.
2.
E4Tech, 2019, “
The Fuel Cell Industry Review
,” Technical Report, https://www.e4tech.com, Accessed June 6, 2021.
3.
Salim
,
R.
,
Noura
,
H.
,
Nabag
,
M.
, and
Fardoun
,
A.
,
2015
, “
Modeling and Temperature Analysis of the Nexa 1.2 kw Fuel Cell System
,”
ASME J. Fuel. Cell. Sci. Technol.
,
12
(
6
), p.
061006
.
4.
Khan
,
A. H.
,
Khan
,
Z. H.
, and
Weiguo
,
Z.
,
2014
,
Model-Based Verification and Validation of Safety-Critical Embedded Real-Time Systems: Formation and Tools
,
Springer
,
Berlin, Heidelberg
, pp.
153
183
.
5.
Njoya M.
,
S.
,
Tremblay
,
O.
, and
Dessaint
,
L.
,
2009
, “
A Generic Fuel Cell Model for the Simulation of Fuel Cell Vehicles
,”
2009 IEEE Vehicle Power and Propulsion Conference
,
Dearborn, MI
, pp.
1722
1729
.
6.
Wu
,
Y.
,
Huangfu
,
Y.
,
Ma
,
R.
,
Ravey
,
A.
, and
Chrenko
,
D.
,
2019
, “
A Strong Robust DC-DC Converter of All-Digital High-Order Sliding Mode Control for Fuel Cell Power Applications
,”
J. Power. Sources.
,
413
, pp.
222
232
.
7.
Derbeli
,
M.
,
Farhat
,
M.
,
Barambones
,
O.
, and
Sbita
,
L.
,
2017
, “
Control of PEM Fuel Cell Power System Using Sliding Mode and Super-Twisting Algorithms
,”
Int. J. Hydrogen. Energy.
,
42
(
13
), pp.
8833
8844
.
8.
Derbeli
,
M.
,
Barambones
,
O.
, and
Sbita
,
L.
,
2018
, “
A Robust Maximum Power Point Tracking Control Method for a Pem Fuel Cell Power System
,”
Appl. Sci.
,
8
(
12
), p.
2449
.
9.
Ahmed
,
M.
,
Elhassane
,
A.
, and
Mohamed
,
A.
,
2018
, “
Modelling and Passivity-Based Control of a Non Isolated DC-DC Converter in a Fuel Cell System
,”
IAES Int. J. Rob. Autom. (IJRA)
,
7
(
3
), p.
197
.
10.
Sharma
,
S.
, and
Bhaskar Babu
,
G. U.
,
2020
, “
A New Control Strategy for a Higher Order Proton Exchange Membrane Fuel Cell System
,”
Int. J. Hydrogen. Energy.
,
45
(
48
), pp.
25945
25959
, Hydrogen Energy in Chemical, Energy and Environmental Engineering.
11.
Bankupalli
,
P. T.
,
Ghosh
,
S.
,
Kumar
,
L.
, and
Samanta
,
S.
,
2018
, “
Fractional Order Modeling and Two Loop Control of Pem Fuel Cell for Voltage Regulation Considering Both Source and Load Perturbations
,”
Int. J. Hydrogen. Energy.
,
43
(
12
), pp.
6294
6309
.
12.
Ortega
,
R.
,
Loría
,
A.
,
Nicklasson
,
P. J.
, and
Sira-Ramírez
,
H.
,
1998
,
Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications
(
Communications and Control Engineering
),
Springer
,
London
.
13.
Chakraborty
,
S.
,
Simões
,
M. G.
, and
Kramer
,
W. E.
, eds.,
2013
,
Power Electronics for Renewable and Distributed Energy Systems: A Sourcebook of Topologies, Control and Integration
(
Green Energy and Technology
),
Springer
,
London
, OCLC: 855561950.
14.
Rahman
,
M. S.
,
Paul
,
S.
, and
Riadh
,
R. R.
,
2015
, “
Study of 1.26 Kw - 24 VDC Proton Exchange Membrane Fuel Cell’s (PEMFC’S) Parameters Output Behaviour: Composition & Temperature
,”
Electr. Comput. Eng.: An Int. J.
,
4
(
3
), pp.
43
59
.
15.
A. Kirubakaran
,
S. J.
, and
Nema
,
R.
,
2009
, “
The Pem Fuel Cell System With DC/DC Boost Converter: Design, Modling and Simulatio
,”
Int. J. Recent Trends in Eng.
,
1
(
3
), pp.
157
161
.
16.
Vazquez-Oviedo
,
E.
,
Ortiz-Lopez
,
M.
,
Diaz-Saldierna
,
L.
, and
Leyva-Ramos
,
J.
,
2014
, “
Modeling Study of a Combined Fuel-Cell Stack/switch Mode DC-DC Converter
,”
ASME J. Fuel. Cell. Sci. Technol.
,
11
(
1
), p.
011009
.
17.
Zhang
,
J.
, ed.,
2013
,
PEM Fuel Cell Testing and Diagnosis
,
Elsevier
,
Amsterdam, Boston
, OCLC: ocn828670774.
18.
Simon Araya
,
S.
,
Juhl Andreasen
,
S.
, and
Knudsen Kær
,
S.
,
2014
, “
Parametric Sensitivity Tests—European Polymer Electrolyte Membrane Fuel Cell Stack Test Procedures
,”
ASME J. Fuel. Cell. Sci. Technol.
,
11
(
6
), p.
061007
.
19.
Allagui
,
H.
,
Mzoughi
,
D.
,
Bouaicha
,
A.
, and
Mami
,
A.
,
2016
, “
Modeling and Simulation of 1.2 kw Nexa PEM Fuel Cell System
,”
Indian J. Sci. Technol.
,
9
(
9
), pp.
1
8
.
20.
Karami
,
N.
,
Outbib
,
R.
, and
Moubayed
,
N.
,
2013
, “
Maximum Power Point Tracking With Reactant Flow Optimization of Proton Exchange Membrane Fuel Cell
,”
ASME J. Fuel. Cell. Sci. Technol.
,
10
(
5
), p.
051008
.
21.
Khanipah
,
N.H.
,
Azri
,
M.
, and
Ibrahim
,
Z.
,
2018
, “
Simple MPPT Technique for DC-DC Converter in Fuel Cell System
,”
Int. J. Electr. Eng. Appl. Sci.
,
1
(
1
), pp.
59
69
.
22.
Mohammad Sarvi
,
I. S.
,
2013
, “
Voltage and Current Based Mppt of Fuel Cells for Fuel Consumption Optimization Andmismatching Compensation
,”
Techn. J. Eng. Appl. Sci.
,
3
(
21
), pp.
2845
2851
.
23.
Ferguson
,
J.
,
Donaire
,
A.
,
Ortega
,
R.
, and
Middleton
,
R. H.
,
2018
, “
Robust Integral Action of Port-Hamiltonian Systems
,”
IFAC-PapersOnLine
,
51
(
3
), pp.
181
186
,
6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
.
24.
Astolfi
,
A.
,
Isidori
,
A.
, and
Marconi
,
L.
,
2003
, “
A Note on Disturbance Suppression for Hamiltonian Systems by State Feedback
,”
IFAC Proc. Volumes
,
36
(
2
), pp.
211
216
,
2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control 2003, Seville
,
Spain
,
Apr. 3–5, 2003
.
25.
Scherpen
,
J. M.
, and
Ortega
,
R.
,
1997
, “
On Nonlinear Control of Euler-Lagrange Systems: Disturbance Attenuation Properties
,”
Syst. Control Lett.
,
30
(
1
), pp.
49
56
.
26.
Mojallizadeh
,
M. R.
, and
Badamchizadeh
,
M. A.
,
2016
, “
Adaptive Passivity-Based Control of a Photovoltaic/Battery Hybrid Power Source Via Algebraic Parameter Identification
,”
IEEE J. Photovoltaics
,
6
(
2
), pp.
532
539
.
27.
Perez
,
M.
,
Ortega
,
R.
, and
Espinoza
,
J.
,
2004
, “
Passivity-Based PI Control of Switched Power Converters
,”
IEEE Trans. Control Syst. Technol.
,
12
(
6
), pp.
881
890
.
28.
Ryalat
,
M.
,
Laila
,
D. S.
, and
Torbati
,
M. M.
,
2015
, “
Integral IdA-PBC and PID-Like Control for Port-Controlled Hamiltonian Systems
,”
2015 American Control Conference (ACC)
,
Chicago, IL
, pp.
5365
5370
.
29.
Velázquez
,
J. G. R.
,
2013
, “
Robust Energy Shaping Control of Nonlinear Systems
,” Ph.D. thesis,
Université Paris Sud - Paris XI
,
Orsay, France
.
30.
Zaidi
,
A.
,
Chaarabi
,
A.
, and
Zanzouri
,
N.
,
2017
, “
Adaptive Passivity-Based Sliding Mode Control of a Boost Converter With Parasitic Parameters
,”
5th International Conference on Control Engineering & Information Technology (CEIT-2017) Proceeding of Engineering and Technology–PET
,
Sousse, Tunisia
, pp.
44
49
.
31.
Sira Ramirez
,
H. J.
, and
Silva-Ortigoza
,
R.
,
2006
,
Control Design Techniques in Power Electronics Devices
,
Springer
,
New York
.
32.
Abd El Monem
,
A.
,
Azmy
,
A. M.
, and
Mahmoud
,
S.
,
2014
, “
Effect of Process Parameters on the Dynamic Behavior of Polymer Electrolyte Membrane Fuel Cells for Electric Vehicle Applications
,”
Ain Shams Eng. J.
,
5
(
1
), pp.
75
84
.
33.
AL-Nussairi
,
M. K.
,
Bayindir
,
R.
,
Padmanaban
,
S.
,
Mihet-Popa
,
L.
, and
Siano
,
P.
,
2017
, “
Constant Power Loads (CPL) With Microgrids: Problem Definition, Stability Analysis and Compensation Techniques
,”
Energies
,
10
(
10
), p.
1656
.
You do not currently have access to this content.