Abstract

This paper describes developing and simulating a nonlinear model predictive controller (NMPC) for a tiltrotor urban air mobility (UAM) aircraft. The aircraft’s free flight is governed by a set of nonlinear rigid-body dynamic equations, considering multiple tiltrotors and their gyroscopic and inertial effects. The control variables include two push rotors’ spin rates and the deflections of traditional control surfaces, including the elevator, aileron, and rudder. The performance of the NMPC is compared with the linear quadratic regulator (LQR) and model predictive controller (MPC) for vibration suppression during the level flight. The NMPC and LQR can fully remove pitch angle oscillation and stabilize altitude in approximately 15 s. The MPC, while still able to reduce the rigid body vibration cannot fully remove the oscillation in 80 s. The NMPC and LQR are compared for lateral and longitudinal trajectory path tracking, with the NMPC showing better performance in both cases due to its ability to take into account the nonlinear nature of the aircraft flight dynamics and predict the vehicle’s future response when determining the best control inputs. Different from the vibration control case, the nonlinear nature of the aircraft flight dynamics should be accounted for by the controller design to properly track the ever-changing path reference, which is not the case for the LQR. While the NMPC has a higher computational cost, it demonstrates much better control performance than the MPC and LQR.

References

1.
Holden
,
J.
, and
Goel
,
N.
,
2016
, “
Fast-Forwarding to a Future of on-Demand Urban Air Transportation
,” UBER Company, Elevate Project, San Francisco, CA, accessed Feb. 2, 2025, https://evtol.news/__media/PDFs/UberElevateWhitePaperOct2016.pdf
2.
Zhou
,
Y.
,
Zhao
,
H.
, and
Liu
,
Y.
,
2020
, “
An Evaluative Review of the VTOL Technologies for Unmanned and Manned Aerial Vehicles
,”
Comput. Commun.
,
149
, pp.
356
369
.10.1016/j.comcom.2019.10.016
3.
Straubinger
,
A.
,
Rothfeld
,
R.
,
Shamiyeh
,
M.
,
Büchter
,
K.-D.
,
Kaiser
,
J.
, and
Plötner
,
K. O.
,
2020
, “
An Overview of Current Research and Developments in Urban Air Mobility – Setting the Scene for Uam Introduction
,”
J. Air Transp. Manage.
,
87
, p.
101852
.10.1016/j.jairtraman.2020.101852
4.
Kim
,
H. D.
,
Perry
,
A. T.
, and
Ansell
,
P. J.
,
2018
, “
A Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology
,” AIAA/IEEE Electric Aircraft Technologies Symposium (
EATS
), Cincinnati, OH, July 12–14, pp.
1
21
.https://ieeexplore.ieee.org/document/8552794
5.
Zhao
,
Y.
,
Guo
,
J.
,
Bai
,
C.
, and
Zheng
,
H.
,
2021
, “
Reinforcement Learning-Based Collision Avoidance Guidance Algorithm for Fixed-Wing Uavs
,”
Complexity J.
,
2021
(
8818013
), pp.
1
12
.10.1155/2021/8818013
6.
Yu
,
X.
,
Zhu
,
W.
, and
Xu
,
L.
,
2020
, “
Real-Time Motion Planning and Trajectory Tracking in Complex Environments Based on Bézier Curves and Nonlinear MPC Controller
,” Chinese Control And Decision Conference (
CCDC
), Hefei, China, Aug. 22–24, pp.
1540
1546
.10.1109/CCDC49329.2020.9163994
7.
Carlos
,
B. B.
,
Sartor
,
T.
,
Zanelli
,
A.
,
Frison
,
G.
,
Burgard
,
W.
,
Diehl
,
M.
, and
Oriolo
,
G.
,
2020
, “
An Efficient Real-Time NMPC for Quadrotor Position Control Under Communication Timedelay
,” 16th International Conference on Control, Automation, Robotics and Vision (
ICARCV
),
Shenzhen, China
, Dec. 13–15, pp.
982
989
.10.1109/ICARCV50220.2020.9305513
8.
Nascimento
,
I. B. P.
,
Ferramosca
,
A.
,
Pimenta
,
L. C. A.
, and
Raffo
,
G. V.
,
2019
, “
NMPC Strategy for a Quadrotor Uav in a 3d Unknown Environment
,” 2019 19th International Conference on Advanced Robotics (
ICAR
),
Belo Horizonte, Brazil
, Dec. 2–6, pp.
179
184
.10.1109/ICAR46387.2019.8981556
9.
Zhang
,
K.
,
Shi
,
Y.
, and
Sheng
,
H.
,
2021
, “
Robust Nonlinear Model Predictive Control Based Visual Servoing of Quadrotor UAVs
,”
IEEE/ASME Trans. Mechatron.
,
26
(
2
), pp.
700
708
.10.1109/TMECH.2021.3053267
10.
Soni
,
D.
,
Manoharan
,
A.
,
Tyagi
,
P.
, and
Sujit
,
P.
,
2022
, “
Learning-Based NMPC Framework for Car Racing Cinematography Using Fixed-Wing UAV
,” 2022 International Conference on Unmanned Aircraft Systems (
ICUAS
), Dubrovnik, Croatia, June 21–24, pp.
1397
1403
.10.1109/ICUAS54217.2022.9836154
11.
Gros
,
S.
,
Quirynen
,
R.
, and
Diehl
,
M.
,
2012
, “
Aircraft Control Based on Fast Non-Linear MPC & Multiple-Shooting
,” IEEE 51st IEEE Conference on Decision and Control (
CDC
),
Maui, HI
, Dec. 10–13, pp.
1142
1147
.10.1109/CDC.2012.6426439
12.
Garcia
,
G.
,
Keshmiri
,
S.
, and
Stastny
,
T.
,
2015
, “
Nonlinear Model Predictive Controller Robustness Extension for Unmanned Aircraft
,”
Int. J. Intell. Unmanned Syst.
,
3
(
2/3
), pp.
93
121
.10.1108/IJIUS-01-2015-0002
13.
Basescu
,
M.
, and
Moore
,
J.
,
2020
, “
Direct Nmpc for Post-Stall Motion Planning With Fixed-Wing UAVs
,” IEEE International Conference on Robotics and Automation (
ICRA
),
Paris, France
, May 31–Aug. 31, pp.
9592
9598
.10.1109/ICRA40945.2020.9196724
14.
Baca
,
T.
,
Hert
,
D.
,
Loianno
,
G.
,
Saska
,
M.
, and
Kumar
,
V.
,
2018
, “
Model Predictive Trajectory Tracking and Collision Avoidance for Reliable Outdoor Deployment of Unmanned Aerial Vehicles
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
Madrid, Spain
, Oct. 1–5, pp.
6753
6760
.10.1109/IROS.2018.8594266
15.
Bertoncini
,
J.
,
Dudek
,
A.
,
Russ
,
M.
,
Gerdts
,
M.
, and
Stütz
,
P.
,
2023
, “
Fixed- Wing UAV Path Planning and Collision Avoidance Using Nonlinear Model Predictive Control and Sensor-Based Cloud Detection
,” IEEE/AIAA 42nd Digital Avionics Systems Conference (
DASC
),
Barcelona, Spain
, Oct. 1–5, pp.
1
10
.10.1109/DASC58513.2023.10311325
16.
He
,
T.
, and
Su
,
W.
,
2023
, “
Robust Control of Gust-Induced Vibration of Highly Flexible Aircraft
,”
Aerosp. Sci. Technol.
,
143
, p.
108703
.10.1016/j.ast.2023.108703
17.
Qu
,
S.
,
Zhu
,
G.
,
Su
,
W.
,
Shan-Min Swei
,
S.
,
Hashimoto
,
M.
, and
Zeng
,
T.
,
2022
, “
Adaptive Model Predictive Control of a Six-Rotor Electric Vertical Take-Off and Landing Urban Air Mobility Aircraft Subject to Motor Failure During Hovering
,”
Proc. Inst. Mech. Eng., Part G
,
236
(
7
), pp.
1396
1407
.10.1177/09544100211032434
18.
Su
,
W.
,
Qu
,
S.
,
Zhu
,
G.
,
Swei
,
S. S.-M.
,
Hashimoto
,
M.
, and
Zeng
,
T.
,
2022
, “
Modeling and Control of a Class of Urban Air Mobility Tiltrotor Aircraft
,”
Aerosp. Sci. Technol.
,
124
, p.
107561
.10.1016/j.ast.2022.107561
19.
Haber
,
A.
,
2021
, “
Compute and Simulate Linear Quadratic Regulator (LQR) in MATLAB for Nonzero Set Points
,”
Fusion of Engineering, Control, Coding, Machine Learning, and Science
.https://aleksandarhaber.com/compute-and-simulate-linear-quadratic-regulator-lqr-in-matlab-for-set-point-tracking
20.
Kwakernaak
,
H.
,
Sivan
,
R.
, and
Tyreus
,
B. N. D.
,
1974
, “
Linear Optimal Control Systems
,” John Wiley & Sons, Inc., Hoboken, NJ.
21.
Lewis
,
F. L.
,
Vrabie
,
D.
, and
Syrmos
,
V. L.
,
2012
, “
Optimal Control,” John Wiley & Sons, Hoboken, NJ
.
22.
Takács
,
G.
, and
Rohal’-Ilkiv
,
B.
,
2012
,
Model Predictive Vibration Control: Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures
,
Springer Science & Business Media, Berlin, Germany
.
23.
MathWorks
,
2022
, Model predictive control toolbox, MathWorks, Natick, MA, accessed Sep. 05, https://la.mathworks.com/products/model-predictive-control.html
24.
MathWorks
,
2022
, Optimization problem, MathWorks, Natick, MA, accessed Nov. 23, https://la.mathworks.com/help/optim/ug/optim.problemdef.optimizationproblem.html
25.
Köhler
,
J.
,
Zeilinger
,
M. N.
, and
Grüne
,
L.
,
2023
, “
Stability and Performance Analysis of Nmpc: Detectable Stage Costs and General Terminal Costs
,”
IEEE Trans. Autom. Control
,
68
(
10
), pp.
6114
6129
.10.1109/TAC.2023.3235244
26.
Zavala
,
V. M.
, and
Biegler
,
L. T.
,
2009
, “
The Advanced-Step Nmpc Controller: Optimality, Stability and Robustness
,”
Automatica
,
45
(
1
), pp.
86
93
.10.1016/j.automatica.2008.06.011
27.
Camacho
,
E. F.
, and
Bordons
,
C.
,
2016
,
Model Predictive Control: Classical, Robust and Stochastic
,
Springer International Publishing
, Berlin, Germany.
28.
Liu
,
Y.
,
Druyor
,
C. T.
, and
Wang
,
L.
,
2023
, “
High-Fidelity Analysis of Lift+ Cruise VTOL Urban Air Mobility Concept Aircraft
,”
AIAA
Paper No. 2023-3671.10.2514/6.2023-3671
29.
Johnson
,
W.
, and
Silva
,
C.
,
2022
, “
NASA Concept Vehicles and the Engineering of Advanced Air Mobility Aircraft
,”
Aeronaut. J.
,
126
(
1295
), pp.
59
91
.10.1017/aer.2021.92
30.
Patterson
,
M. D.
,
Antcliff
,
K. R.
, and
Kohlman
,
L. W.
,
2018
, “
A Proposed Approach to Studying Urban Air Mobility Missions Including an Initial Exploration of Mission Requirements
,”
Annual Forum and Technology Display
, Phoenix, AZ, May 15–17, pp.
1
19
.https://ntrs.nasa.gov/api/citations/20190000991/downloads/20190000991.pdf
You do not currently have access to this content.