The area of predictive maintenance (PM) has received growing research interest in the past few years. Diagnostic capabilities of PM technologies have increased due to advances made in sensor technologies, signal processing algorithms, and the rapid development of computational power and data handling algorithms. Conventional PM programs are mostly built around analyzing sensors' data collected from physical systems. Incorporating simulation data collected from digital models replicating the physical system with sensors' data can lead to more optimization for operation and maintenance. This paper demonstrates the role of using digital models in implementing effective condition monitoring on centrifugal pumps. Two digital models are used to study the dynamic performance of a centrifugal pump experiencing cavitation condition. The first model is a three-dimensional fully turbulent computational fluid dynamic (CFD) model. Based on the pressure distribution obtained from the CFD, a novel analytical pressure pulsation model is developed and used to simulate the exciting forces affecting the pump. The second digital model is a pump casing dynamic model which is used to predict the casing vibration response to exciting forces due to faulty operating conditions. Results obtained from the digital models are validated using an experimental test rig of a small centrifugal pump. Using this concept, a pump faulty operation can be simulated to provide complete understanding of the root cause of the fault. Additionally, digital models can be used to simulate different corrective actions that would restore the normal operation of the pump.

References

1.
McKee
,
K.
,
Forbes
,
G.
,
Mazhar
,
I.
,
Entwistle
,
R.
, and
Howard
,
I.
,
2011
, “
A Review of Major Centrifugal Pump Failure Modes With Application to the Water Supply and Sewerage Industries
,”
ICOMS Asset Management Conference
Gold Coast, Australia, May 16–20, Paper No. 032.
2.
Hassan
,
M. A.
,
Habib
,
M. R.
,
Abul Seoud
,
R. A.
, and
Bayoumi
,
A. M.
,
2018
, “
Wavelet-Based Multiresolution Bispectral Analysis for Detection and Classification of Helicopter Drive-Shaft Problems
,”
ASME J. Dyn. Syst., Meas., Control.
,
140
(
6
), p. 061009.
3.
Limbach
,
P.
, and
Skoda
,
R.
,
2017
, “
Numerical and Experimental Analysis of Cavitating Flow in a Low Specific Speed Centrifugal Pump With Different Surface Roughness
,”
ASME J. Fluids Eng.
,
139
(
10
), p. 101201.
4.
Muttalli
,
R. S.
,
Agrawal
,
S.
, and
Warudkar
,
H.
,
2014
, “
CFD Simulation of Centrifugal Pump Impeller Using ANSYS-CFX
,”
Int. J. Innovative Res. Sci.
,
3
(
8
), pp. 11–14.
5.
Cunha
,
M. A. R.
, and
Nova
,
H. F. V.
,
2013
, “
Cavitation Modeling of a Centrifugal Pump Impeller
,”
22nd International Congress of Mechanical Engineering
, Sao Paulo, Brazil, Nov. 3–7, pp. 1–6.
6.
Abdel Fatah
,
A.
,
Hassan
,
M.
,
Lofty
,
M.
, and
Dimitri
,
A.
,
2018
, “
Using Digital Models for Condition Based Maintenance of High Pressure Pumps in SWRO Desalination Plants
,”
Asia Turbomachinery & Pump Symposium
, Singapore, Mar. 12–15, Paper No. 15.
7.
Fu
,
Y.
,
Yuan
,
J.
,
Yuan
,
S.
,
Pace
,
G.
,
d'Agostino
,
L.
,
Huang
,
P.
, and
Li
,
X.
,
2014
, “
Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating Under Low Flow Rates
,”
ASME J. Fluids Eng.
,
137
(
1
), p. 011102.
8.
George
,
A.
, and
P
,
M.
,
2016
, “
CFD Analysis of Performance Characteristics of Centrifugal Pump Impeller to Minimizing Cavitation
,”
International Conference on Current Research in Engineering Science and Technology
, May 4, Trichy, India, pp. 24–30.
9.
Shinde
,
P.
, and
Satam
,
A.
,
2014
, “
Cavitation Effect in Centrifugal Pump
,”
Int. J. Res. Sci. Develop.
,
2
(
2
), pp. 20–23.
10.
Tan
,
L.
,
Zhu
,
B.
,
Wang
,
Y.
,
Cao
,
S.
, and
Gui
,
S.
,
2015
, “
Numerical Study on Characteristics of Unsteady Flow in a Centrifugal Pump Volute at Partial Load Condition
,”
Eng. Comput.
,
32
(
6
), pp.
1549
1566
.
11.
Xu
,
Y.
,
Tan
,
L.
,
Liu
,
Y.
,
Hao
,
Y.
,
Zhu
,
B.
, and
Cao
,
S.
,
2018
, “
Pressure Fluctuation and Flow Pattern of a Mixed-Flow Pump Under Design and Off-Design Conditions
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
13
), pp. 2430–2440.
12.
Shi
,
W.
,
Wang
,
C.
,
Wang
,
W.
, and
Pei
,
B.
,
2014
, “
Numerical Calculation on Cavitation Pressure Pulsation in Centrifugal Pump
,”
Adv. Mech. Eng.
,
6
(1), pp. 1–8.
13.
Chahine
,
G. L.
,
Franc
,
J.-P.
, and
Karimi
,
A.
,
2014
, “
Cavitation Impulsive Pressures
,”
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
,
Kim
,
K.-H.
,
Chahine
,
G. L.
,
Franc
,
J.-P.
, and
Karimi
,
A.
eds.,
Springer
,
Berlin
, pp.
71
96
.
14.
Xu
,
Y.
,
Tan
,
L.
,
Liu
,
Y.
, and
Cao
,
S.
,
2017
, “
Pressure Fluctuation and Flow Pattern of a Mixed-Flow Pump With Different Blade Tip Clearances Under Cavitation Condition
,”
Adv. Mech. Eng.
,
9
(4), (epub).
15.
Abdulkarem
,
W.
,
Amuthakkannan
,
R.
, and
Al-Raheem
,
K. F.
,
2014
, “
Centrifugal Pump Impeller Crack Detection Using Vibration Analysis
,”
Second International Conference on Research in Science, Engineering and Technology
(
ICRSET'2014
), Dubai, United Arab Emirates, Mar. 21–22, pp. 206–211.https://pdfs.semanticscholar.org/8025/4685ed8121d8fb0607ca83afe772fb07e76f.pdf
16.
Golbabaei
,
M.
,
Nourbakhsh
,
S. A.
, and
Sadighiani
,
K.
,
2009
, “
Failure Detection and Optimization of a Centrifugal-Pump Volute Casing
,”
SEM Annual Conference
, Albuquerque, NM, June 1–4, pp. 1–6.https://www.academia.edu/2389418/Failure_Detection_and_Optimization_of_a_Centrifugal-pump_Volute_Casing
17.
Hao
,
Y.
, and
Tan
,
L.
,
2018
, “
Symmetrical and Unsymmetrical Tip Clearances on Cavitation Performance and Radial Force of a Mixed Flow Pump as Turbine at Pump Mode
,”
Renewable Energy
,
127
, pp.
368
376
.
18.
Lu
,
J.
,
Yuan
,
S.
,
Parameswaran
,
S.
,
Yuan
,
J.
,
Ren
,
X.
, and
Si
,
Q.
,
2017
, “
Investigation on the Vibration and Flow Instabilities Induced by Cavitation in a Centrifugal Pump
,”
Adv. Mech. Eng.
,
9
(
4
), pp.
1
11
.
19.
Rodriguez
,
C. G.
,
Egusquiza
,
E.
, and
Santos
,
I. F.
,
2007
, “
Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine
,”
ASME J. Fluids Eng.
,
129
(11), pp. 1428–1435.
20.
Hassan
,
M.
,
Bayoumi
,
A.
, and
Shin
,
Y.
,
2014
, “
Quadratic-Nonlinearity Index Based on Bicoherence and Its Application in Condition Monitoring of Drive-Train Components
,”
IEEE Trans. Instrum. Meas.
,
63
(
3
), pp.
719
728
.
21.
Farokhzad
,
S.
,
Bakhtyari
,
N.
, and
Ahmadi
,
H.
,
2013
, “
Vibration Signals Analysis and Condition Monitoring of Centrifugal Pump
,”
Tech. J. Eng. Appl. Sci.
,
3
(12), pp.
1081
1085
.https://pdfs.semanticscholar.org/64cd/75cac19a403d3b48bdcecf2da67e72d203c2.pdf
22.
Kim
,
M. J.
,
Jin
,
H. B.
, and
Chung
,
W. J.
,
2012
, “
A Study on Prediction of Cavitation for Centrifugal Pump
,”
Int. J. Mech., Aerosp., Ind., Mechatronic Manuf. Eng.
,
6
(
12
), pp. 2720–2725.
23.
Chahine
,
G. L.
,
Hsiao
,
C.-T.
, and
Raju
,
R.
,
2014
, “
Scaling of Cavitation Bubble Cloud Dynamics on Propellers
,”
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
,
Kim
,
K.-H.
,
Chahine
,
G. L.
,
Franc
,
J.-P.
, and
Karimi
,
A.
eds.,
Springer
,
Berlin
, pp.
345
373
.
24.
Chandrupatla
,
T. R.
, and
Belegundu
,
A. D.
,
1991
,
Introduction to Finite Elements in Engineering
,
Prentice Hall International
, Upper Saddle River, NJ.
25.
Hassan
,
M.
,
Tarbutton
,
J.
,
Bayoumi
,
A.
, and
Shin
,
Y. J.
,
2014
, “
Condition Monitoring of Helicopter Drive Shafts Using Quadratic-Nonlinearity Metric Based on Cross-Bispectrum
,”
IEEE Trans. Aerosp. Electron. Syst.
,
50
(
4
), pp.
2819
2829
.
26.
Couch
,
L. W.
, II
,
2013
,
Digital and Analog Communications Systems
, 8th ed.,
Prentice Hall
, Upper Saddle River,
NJ
, pp.
426
432
.
27.
Suhane
,
A.
,
2012
, “
Experimental Study on Centrifugal Pump to Determine the Effect of Radial Clearance on Pressure Pulsations, Vibrations and Noise
,”
Int. J. Eng. Res. Appl.
,
2
(
4
), pp.
1823
1829
.http://www.ijera.com/papers/Vol2_issue4/KU2418231829.pdf
You do not currently have access to this content.