The Udwadia–Kalaba methodology is a possible way of explicitly obtaining the equations of motion of constrained systems. From these equations of motion, one can estimate the necessary forces in the constraint to keep the system in a given motion. Hence, the Udwadia–Kalaba methodology can also apply to active tracking control of subsystems or the control of points of a structure. In this work, one investigates experimentally the benefits and drawbacks of such control strategy by applying it to the control of out-of-plane vibrations of a cantilever beam. The beam is excited by a shaker mounted near the clamped end of the beam. A second shaker applies the control forces in the free end of the beam, where an accelerometer is used for feedback. The vibration behavior of the beam under excitation/control is measured by a laser vibrometer. Results show that the methodology changes the dynamic behavior of the structure by changing its boundary conditions at the point of control, thus shifting natural frequencies and mode shapes. Results also show that the successful implementation of the method experimentally is sensitive to the quality of modeling of the structure.

References

1.
Zhao
,
H.
,
Zhen
,
S.
, and
Chen
,
Y. H.
,
2013
, “
Dynamic Modeling and Simulation of Multi-Body Systems Using the Udwadia–Kalaba Theory
,”
Chin. J. Mech. Eng.
,
26
(
5
), pp.
839
850
.
2.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1992
, “
A New Perspective on Constrained Motion
,”
Proc. R. Soc. London, Ser. A
,
439
(
1906
), pp.
407
410
.
3.
Sun
,
H.
,
Zhao
,
H.
,
Zhen
,
S.
,
Huang
,
K.
,
Zhao
,
F.
,
Chen
,
X.
, and
Chen
,
Y. H.
,
2016
, “
Application of the Udwadia–Kalaba Approach to Tracking Control of Mobile Robots
,”
Nonlinear Dyn.
,
83
(
1
), pp.
389
400
.
4.
Huang
,
J.
,
Chen
,
Y. H.
, and
Zhong
,
Z. H.
,
2013
, “
Udwadia–Kalaba Approach for Parallel Manipulator Dynamics
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
6
), p.
061003
.
5.
Pennestri
,
E.
,
Valentini
,
P. P.
, and
Falco
,
D.
,
2010
, “
An Application of the Udwadia–Kalaba Dynamic Formulation to Flexible Multibody Systems
,”
J. Franklin Inst.
,
347
(
1
), pp.
173
194
.
6.
Zhang
,
B. Z.
,
Zhen
,
S. C.
,
Zhao
,
H.
, and
Chen
,
Y. H.
,
2015
, “
Why Can a Free-Falling Cat Always Manage to Land Safely on Its Feet?
,”
Nonlinear Dyn.
,
79
(
4
), pp.
2237
2250
.
7.
Udwadia
,
F. E.
, and
Koganti
,
P. B.
,
2015
, “
Dynamics and Control of a Multi-Body Planar Pendulum
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
845
866
.
8.
Udwadia
,
F. E.
, and
Wanichanon
,
T.
,
2013
, “
Control of Uncertain Nonlinear Multibody Mechanical Systems
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041020
.
9.
Lam
,
T.
,
Schutte
,
A.
, and
Udwadia
,
F. E.
,
2006
, “
Constraint Based Control Method for Precision Formation Flight of Spacecraft
,”
AAS/AIAA
Space Flight Mechanics Meeting, Tampa, FL, Jan. 22–26, pp.
343
359
.
10.
Cho
,
H.
, and
Udwadia
,
F. E.
,
2013
, “
Explicit Control Force and Torque Determination for Satellite Formation-Keeping With Attitude Requirements
,”
J. Guid., Control, Dyn.
,
36
(
2
), pp.
589
605
.
11.
Mylapili
,
H.
, and
Udwadia
,
F. E.
,
2012
, “
A Constrained Motion Approach to the Synchronization of Multiple Coupled Slave Gyroscopes
,” 13th ASCE Aerospace Division Conference on Engineering, Science, Construction, and Operations in Challenging Environments, and the 5th NASA/
ASCE
Workshop On Granular Materials in Space Exploration, Pasadena, CA, Apr. 15–18, pp.
1349
1360
.
12.
Spada
,
R. P.
, and
Nicoletti
,
R.
,
2015
, “
Application of the Udwadia–Kalaba Methodology to the Active Control of Shaft Vibration
,”
J. Vib. Control
(epub).
13.
Peters
,
J.
,
Mistry
,
M.
,
Udwadia
,
F. E.
,
Nakanishi
,
J.
, and
Schaal
,
S.
,
2008
, “
A Unifying Framework for Robot Control With Redundant DOFs
,”
Auton. Rob.
,
24
(
1
), pp.
1
12
.
14.
Braun
,
D. J.
, and
Goldfarb
,
M.
,
2009
, “
A Control Approach for Actuated Dynamic Walking in Biped Robots
,”
IEEE Trans. Rob.
,
25
(
6
), pp.
1292
1303
.
15.
Udwadia
,
F. E.
,
2008
, “
Optimal Tracking Control of Nonlinear Dynamical Systems
,”
Proc. R. Soc. London, Ser. A
,
464
(
2097
), pp.
2341
2363
.
16.
Thomson
,
W. T.
, and
Dahleh
,
M. D.
,
1998
,
Theory of Vibration With Applications
, 5th ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
17.
Maia
,
N. M. M.
, and
Silva
,
J. M. M.
,
1997
,
Theoretical and Experimental Modal Analysis
,
Research Studies
,
Taunton, UK
.
You do not currently have access to this content.