The subject of this paper is a flow-adaptive measurement grid algorithm developed for one-dimensional (1D) and two-dimensional (2D) flow field surveys with pneumatic probes in turbomachinery flows. The algorithm automatically determines the distribution and the amount of measurement points needed for an approximation of the pressure distribution within a predefined accuracy. The algorithm is based on transient traverses, conducted back and forth in the circumferential direction. A correction of the dynamic response is applied by deconvolving the transient measurement data using the information embedded in both transient measurements. In consequence, the performance of the algorithm is largely independent of the transient traversing speed and the geometry of the pressure measuring system. Insertion and removal strategies are incorporated in order to reduce measurement points and increase robustness toward differing flow field conditions. The performance of the algorithm is demonstrated for 2D flow field surveys with a pneumatic five-hole probe in an annular cascade wind tunnel. The measurement grid points are automatically adjusted so that a consistent resolution of the flow features is achieved within the measurement domain. Furthermore, the application of the algorithm shows a significant reduction in the number of measurement points. Compared to the measurement duration based on uniform grids, the duration is reduced by at least 7%, while maintaining a high accuracy of the measurement. The purpose of this paper is to demonstrate the performance of measurement grids adapted to local flow field conditions. Consequently, valuable measurement time can be saved without a loss in quality of the data obtained.

References

1.
Strazisar
,
A. J.
,
1993
,
Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
, Vol.
1
,
Elsevier
,
Amsterdam, The Netherlands
.
2.
Rohlik
,
H. E.
,
Kofskey
,
M. G.
,
Allen
,
H. W.
, and
Herzig
,
H. Z.
,
1953
, “
Secondary Flows and Boundary-Layer Accumulations in Turbine Nozzles
,” Lewis Flight Propulsion Laboratory,
Report No. NACA-TR-1168
.
3.
Cantwell
,
E. R.
,
Zilliac
,
G.
, and
Fukunishi
,
Y.
,
1989
, “
An Intelligent Data Acquisition System for Fluid Mechanics Research
,”
Exp. Fluids
,
8
(
3
), pp.
233
236
.
4.
Takahashi
,
T. T.
, and
Ross
,
J. C.
,
1995
, “
On the Development of an Efficient Wake Survey System
,”
SAE
Technical Paper No. 951990.
5.
Lenherr
,
C.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2007
, “
A Flow Adaptive Aerodynamic Probe for Turbomachinery
,”
Meas. Sci. Technol.
,
18
(
8
), pp.
2599
2608
.
6.
Franken
,
A. R.
, and
Ivey
,
P. C.
,
2006
, “
Enhancing Flow Field Measurements Through Adaptive Multidimensional Data Sampling
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
518
524
.
7.
Bartsch
,
C.
,
Hölle
,
M.
,
Jeschke
,
P.
, and
Metzler
,
T.
,
2016
, “
One-Dimensional Flow-Adaptive Measurement Grid Algorithm for Pneumatic Probe Measurements
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), pp.
031601
.
8.
Huston
,
W. B.
,
1948
, “
Accuracy of Airspeed Measurements and Flight Calibration Procedures
,” National Advisory Committee for Aeronautics,
Technical Report No. NACA-TR-919
.
9.
Draper
,
C. S.
, and
Bentley
,
G. P.
,
1940
, “
Design Factors Controlling the Dynamic Performance of Instruments
,”
Trans. ASME
,
62
(
5
), pp.
421
432
.
10.
Rediniotis
,
O. K.
, and
Pathak
,
M. M.
,
1999
, “
Simple Technique for Frequency-Response Enhancement of Miniature Pressure Probes
,”
AIAA J.
,
37
(
7
), pp.
897
899
.
11.
de Boor
,
C.
,
1987
,
A Practical Guide to Splines
,
Springer-Verlag
,
New York
.
12.
Jupp
,
D. L.
,
1978
, “
Approximation to Data by Splines With Free Knots
,”
SIAM J. Numer. Anal.
,
15
(
2
), pp.
328
343
.
13.
Lyche
,
T.
, and
Mørken
,
K.
,
1987
, “
Knot Removal for Parametric B-Spline Curves and Surfaces
,”
Comput. Aided Geom. Des.
,
4
(
3
), pp.
217
230
.
14.
Lyche
,
T.
, and
Mørken
,
K.
,
1988
, “
A Data-Reduction Strategy for Splines With Applications to the Approximation of Functions and Data
,”
IMA J. Numer. Anal.
,
8
(
2
), pp.
185
208
.
15.
Schumaker
,
L. L.
, and
Stanley
,
S. S.
,
1996
, “
Shape-Preserving Knot Removal
,”
Comput. Aided Geom. Des.
,
13
(
9
), pp.
851
872
.
16.
Schwetlick
,
H.
, and
Schütze
,
T.
,
1995
, “
Least Squares Approximation by Splines With Free Knots
,”
BIT Numer. Math.
,
35
(
3
), pp.
361
384
.
17.
Vinnemeier
,
F.
,
Simon
,
L.
, and
Koschel
,
W.
,
1990
, “
Korrektur des Kopfgeometrieeinflusses Einer Fünfloch-Drucksonde auf die Meßergebnisse/Correction Method for the Head Geometry Influence of a Five-Hole Pressure Probe on the Measurement Results
,”
Tech. Mess.
,
57
(
JG
), pp.
296
303
.
18.
Parvizinia
,
M.
, and
Salchow
,
K.
,
1993
, “
Verfahren zur Korrektur des Gradientenfehlers bei Messungen mit Pneumatischen Mehrlochsonden
,” Institute of Jet Propulsion and Turbomachinery, RWTH Aachen University, Technical Report No. TM93-10.
19.
Hölle
,
M.
,
Bartsch
,
C.
,
Hönen
,
H.
,
Fröbel
,
T.
,
Metzler
,
T.
, and
Jeschke
,
P.
,
2015
, “
Measurement Uncertainty Analysis for Combined Multi-Hole Pressure Probes With a Temperature Sensor
,”
International Gas Turbine Congress
2015, pp.
1527
1538
.
20.
Bergh
,
H.
, and
Tijdeman
,
H.
,
1965
, “
Theoretical and Experimental Results for the Dynamic Response of Pressure Measuring Systems
,” Nationaal Lucht-en Ruimtevaartlaboratorium, Technical Report No. NLR-TR F. 238.
21.
Dahmen
,
W.
, and
Reusken
,
A.
,
2007
,
Numerik für Ingenieure und Naturwissenschaftler
, Vol.
2
.
Springer-Verlag
,
Berlin
.
22.
Binder
,
A.
, and
Romey
,
R.
,
1983
, “
Secondary Flow Effects and Mixing of the Wake Behind a Turbine Stator
,”
ASME J. Eng. Power
,
105
(
1
), pp.
40
46
.
23.
Restemeier
,
M.
,
Jeschke
,
P.
,
Guendogdu
,
Y.
, and
Gier
,
J.
,
2013
, “
Numerical and Experimental Analysis of the Effect of Variable Blade Row Spacing in a Subsonic Axial Turbine
,”
ASME J. Turbomach.
,
135
(
2
), p.
021031
.
You do not currently have access to this content.