This paper proposes, for the first time without using any linearization or order reduction, an adaptive and model-based discharge pressure control design for the variable displacement axial piston pumps (VDAPPs), whose dynamical behaviors are highly nonlinear and can be described by a fourth-order differential equation. The rigorous stability proof, with an asymptotic convergence, is given for the entire system. In the proposed novel controller design method, the specifically designed stabilizing terms constitute an essential core to cancel out all the stability-preventing terms. The experimental results reveal that rapid parameter adaptation significantly improves the feedback signal tracking precision compared to a known-parameter controller design. In the comparative experiments, the adaptive controller design demonstrates the state-of-the-art discharge pressure control performance, enabling a possibility for energy consumption reductions in hydraulic systems driven with VDAPP.

References

1.
Mattila
,
J.
,
Koivumäki
,
J.
,
Caldwell
,
D.
, and
Semini
,
C.
,
2017
, “
A Survey on Control of Hydraulic Robotic Manipulators With Projection to Future Trends
,”
IEEE/ASME Trans. Mechatronics
,
22
(
2
), pp.
669
680
.
2.
Zeiger
,
G.
, and
Akers
,
A.
,
1985
, “
Torque on the Swashplate of an Axial Piston Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
3
), pp.
220
226
.
3.
Zeiger
,
G.
, and
Akers
,
A.
,
1986
, “
Dynamic Analysis of an Axial Piston Pump Swashplate Control
,”
Proc. Inst. Mech. Eng., Part C
,
200
(
1
), pp.
49
58
.
4.
Kim
,
S.
,
Cho
,
H.
, and
Lee
,
C.
,
1987
, “
A Parameter Sensitivity Analysis for the Dynamic Model of a Variable Displacement Axial Piston Pump
,”
Proc. Inst. Mech. Eng., Part C
,
201
(
4
), pp.
235
243
.
5.
Schoenau
,
G.
,
Burton
,
R.
, and
Kavanagh
,
G.
,
1990
, “
Dynamic Analysis of a Variable Displacement Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
1
), pp.
122
132
.
6.
Manring
,
N.
, and
Johnson
,
R.
,
1994
, “
Swivel Torque Within a Variable-Displacement Pump
,”
46th National Conference on Fluid Power
, Anaheim, CA, Mar. 23–24, pp.
13
24
.http://www.nfpa.com/tech_papers/1994/94-1_3.pdf
7.
Manring
,
N.
, and
Johnson
,
R.
,
1996
, “
Modeling and Designing a Variable-Displacement Open-Loop Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
118
(
2
), pp.
267
271
.
8.
Manring
,
N.
,
1998
, “
The Torque on the Input Shaft of an Axial-Piston Swash-Plate Type Hydrostatic Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
1
), pp.
57
62
.
9.
Manring
,
N.
, and
Damtew
,
F.
,
2001
, “
The Control Torque on the Swash Plate of an Axial-Piston Pump Utilizing Piston-Bore Springs
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
3
), pp.
471
478
.
10.
Kim
,
S.
,
Cho
,
H.
, and
Lee
,
C.
,
1988
, “
Stability Analysis of a Load-Sensing Hydraulic System
,”
Proc. Inst. Mech. Eng., Part C
,
202
(
2
), pp.
79
88
.
11.
Krus
,
P.
,
1988
, “
On Load Sensing Fluid Power Systems
,” Ph.D. thesis, Linköping University, Linköping, Sweden.
12.
Chiriboga
,
J.
,
Thein
,
M.-W.
, and
Misawa
,
E.
,
1995
, “
Input-Output Feedback Linearization Control of a Load-Sensing Hydraulic Servo System
,”
Fourth IEEE Conference on Control Applications
(
CCA
), Albany, NY, Sept. 28–29, pp.
910
915
.
13.
Sakurai
,
Y.
,
Nakada
,
T.
, and
Tanaka
,
K.
,
2002
, “
Design Method of an Intelligent Oil-Hydraulic System (Load Sensing Oil-Hydraulic System)
,”
IEEE International Symposium on Intelligent Control
(
ISIC
), Vancouver, BC, Canada, Oct. 30, pp.
626
630
.
14.
Wu
,
D.
,
Burton
,
R.
,
Schoenau
,
G.
, and
Bitner
,
D.
,
2002
, “
Establishing Operating Points for a Linearized Model of a Load Sensing System
,”
Int. J. Fluid Power
,
3
(
2
), pp.
47
54
.
15.
Pedersen
,
H.
,
Andersen
,
T.
, and
Hansen
,
M.
,
2008
, “
Controlling a Conventional LS-Pump Based on Electrically Measured LS-Pressure
,”
Bath/ASME Symposium on Fluid Power and Motion Control
, Bath, UK, Sept. 10–12, pp. 541–546.http://vbn.aau.dk/en/publications/controlling-a-conventional-lspump-based-on-electrically-measured-lspressure(ec97b9f0-fc2c-11dd-83f3-000ea68e967b).html
16.
Jayaraman
,
G.
, and
Lunzman
,
S.
,
2010
, “
Parameter Estimation of an Electronic Load Sensing Pump Using the Recursive Least Squares Algorithm
,”
49th IEEE Conference on Decision and Control
(
CDC
), Atlanta, GA, Dec. 15–17, pp.
3445
3450
.
17.
Jayaraman
,
G.
, and
Lunzman
,
S.
,
2011
, “
Modeling and Analysis of an Electronic Load Sensing Pump
,”
IEEE International Conference on Control Applications
(
CCA
), Denver, CO, Sept. 28–30, pp.
82
87
.
18.
Lin
,
S.
, and
Akers
,
A.
,
1990
, “
Optimal Control Theory Applied to Pressure-Controlled Axial Piston Pump Design
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
3
), pp.
475
481
.
19.
Du
,
H.
, and
Manring
,
N.
,
2001
, “
A Single-Actuator Control Design for Hydraulic Variable Displacement Pumps
,”
American Control Conference
(
ACC
), Arlington, VA, June 25–27, Vol.
6
, pp.
4484
4489
.
20.
Grabbel
,
J.
, and
Ivantysynova
,
M.
,
2005
, “
An Investigation of Swash Plate Control Concepts for Displacement Controlled Actuators
,”
Int. J. Fluid Power
,
6
(
2
), pp.
19
36
.
21.
Dean
,
P.
, and
Fales
,
R.
,
2007
, “
Modern Control Design for a Variable Displacement Hydraulic Pump
,”
American Control Conference
(
ACC
), New York, July 9–13, pp.
3535
3540
.
22.
Kemmetmüller
,
W.
,
Fuchshumer
,
F.
, and
Kugi
,
A.
,
2010
, “
Nonlinear Pressure Control of Self-Supplied Variable Displacement Axial Piston Pumps
,”
Control Eng. Pract.
,
18
(
1
), pp.
84
93
.
23.
Guo
,
K.
, and
Wei
,
J.
,
2013
, “
Adaptive Robust Control of Variable Displacement Pumps
,”
American Control Conference
(
ACC
), Washington, DC, June 17–19, pp.
1112
1117
.
24.
Wei
,
J.
,
Guo
,
K.
,
Fang
,
J.
, and
Tian
,
Q.
,
2015
, “
Nonlinear Supply Pressure Control for a Variable Displacement Axial Piston Pump
,”
Proc. Inst. Mech. Eng., Part I
,
229
(
7
), pp.
614
624
.
25.
Zhu
,
W.-H.
,
Xi
,
Y.-G.
,
Zhang
,
Z.-J.
,
Bien
,
Z.
, and
De Schutter
,
J.
,
1997
, “
Virtual Decomposition Based Control for Generalized High Dimensional Robotic Systems With Complicated Structure
,”
IEEE Trans. Rob. Autom.
,
13
(
3
), pp.
411
436
.
26.
Zhu
,
W.-H.
,
2010
,
Virtual Decomposition Control: Toward Hyper Degrees of Freedom Robots
,
Springer-Verlag
, Berlin.
27.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
28.
Tao
,
G.
,
1997
, “
A Simple Alternative to the Barbalat Lemma
,”
IEEE Trans. Autom. Control
,
42
(
5
), p.
698
.
29.
Zhu
,
W.-H.
, and
De Schutter
,
J.
,
1999
, “
Adaptive Control of Mixed Rigid/Flexible Joint Robot Manipulators Based on Virtual Decomposition
,”
IEEE Trans. Rob. Autom.
,
15
(
2
), pp.
310
317
.
30.
Zhu
,
W.-H.
,
Bien
,
Z.
, and
De Schutter
,
J.
,
1998
, “
Adaptive Motion/Force Control of Multiple Manipulators With Joint Flexibility Based on Virtual Decomposition
,”
IEEE Trans. Autom. Control
,
43
(
1
), pp.
46
60
.
31.
Sohl
,
G. A.
, and
Bobrow
,
J. E.
,
1999
, “
Experiments and Simulations on the Nonlinear Control of a Hydraulic Servosystem
,”
IEEE Trans. Control Syst. Technol.
,
7
(
2
), pp.
238
247
.
32.
Yao
,
B.
,
Bu
,
F.
,
Reedy
,
J.
, and
Chiu
,
G. T.-C.
,
2000
, “
Adaptive Robust Control of Single-Rod Hydraulic Actuators: Theory and Experiments
,”
IEEE/ASME Trans. Mechatronics
,
5
(
1
), pp.
79
91
.
33.
Zhu
,
W.-H.
, and
Piedboeuf
,
J.
,
2005
, “
Adaptive Output Force Tracking Control of Hydraulic Cylinders With Applications to Robot Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
2
), pp.
206
217
.
34.
Lovrec
,
D.
, and
Ulaga
,
S.
,
2007
, “
Pressure Control in Hydraulic Systems With Variable or Constant Pumps?
,”
Exp. Tech.
,
31
(
2
), pp.
33
41
.
35.
Koivumäki
,
J.
,
Honkakorpi
,
J.
,
Vihonen
,
J.
, and
Mattila
,
J.
,
2014
, “
Hydraulic Manipulator Virtual Decomposition Control With Performance Analysis Using Low-Cost MEMS Sensors
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Besacon, France, July 8–11, pp.
910
917
.
36.
Harrison
,
A.
, and
Stoten
,
D.
,
1995
, “
Generalized Finite Difference Methods for Optimal Estimation of Derivatives in Real-Time Control Problems
,”
Proc. Inst. Mech. Eng., Part I
,
209
(
2
), pp.
67
78
.
37.
Roberts
,
S.
,
1959
, “
Control Charts Based on Geometric Moving Averages
,”
Technometrics
,
1
(
3
), pp.
239
250
.
38.
Koivumäki
,
J.
, and
Mattila
,
J.
,
2015
, “
Stability-Guaranteed Force-Sensorless Contact Force/Motion Control of Heavy-Duty Hydraulic Manipulators
,”
IEEE Trans. Rob.
,
31
(
4
), pp.
918
935
.
39.
Bonsignorio
,
F.
, and
del Pobil
,
A.
,
2015
, “
Toward Replicable and Measurable Robotics Research (From the Guest Editors)
,”
IEEE Rob. Autom. Mag.
,
22
(
3
), pp.
32
32
.
40.
Zhu
,
W.-H.
, and
Vukovich
,
G.
,
2011
, “
Virtual Decomposition Control for Modular Robot Manipulators
,” IFAC. Proc. Vol.,
44
(1), pp.
13486
13491
.
41.
Zhu
,
W.-H.
,
Lamarche
,
T.
,
Dupuis
,
E.
,
Jameux
,
D.
,
Barnard
,
P.
, and
Liu
,
G.
,
2013
, “
Precision Control of Modular Robot Manipulators: The VDC Approach With Embedded FPGA
,”
IEEE Trans. Rob.
,
29
(
5
), pp.
1162
1179
.
You do not currently have access to this content.