This paper focuses on the problem of disturbance rejection for a class of interval type-2 (IT-2) fuzzy systems via equivalence-input-disturbance (EID)-based approach. The main objective of this work is to design a fuzzy state-feedback controller combined with a disturbance estimator such that the output of the fuzzy system perfectly tracks the given reference signal without steady-state error and produces an EID to eliminate the influence of the actual disturbances. By constructing a suitable Lyapunov function and using linear matrix inequality (LMI) technique, a new set of sufficient conditions is established in terms of linear matrix inequalities for the existence of fuzzy controller. Finally, a simple pendulum model is considered to illustrate the effectiveness and applicability of the proposed EID-based control design.

References

1.
Liu
,
R.-J.
,
Wu
,
M.
,
Liu
,
G.-P.
,
She
,
J.
, and
Thomas
,
C.
,
2013
, “
Active Disturbance Rejection Control Based on an Improved Equivalent-Input-Disturbance Approach
,”
IEEE/ASME Trans. Mechatron.
,
18
(
4
), pp.
1410
1413
.
2.
Sakthivel
,
R.
,
Vadivel
,
P.
,
Mathiyalagan
,
K.
, and
Arunkumar
,
A.
,
2014
, “
Fault-Distribution Dependent Reliable H∞ Control for Takagi-Sugeno Fuzzy Systems
,”
ASME J. Dyn. Syst., Meas. Control
,
136
(
2
), p.
021021
.
3.
Zhang
,
L.
,
Tong
,
S.
, and
Li
,
Y.
,
2014
, “
Dynamic Surface Error Constrained Adaptive Fuzzy Output-Feedback Control of Uncertain Nonlinear Systems With Unmodeled Dynamics
,”
Neurocomputing
,
143
, pp.
123
133
.
4.
Li
,
H.
,
Yu
,
J.
,
Hilton
,
C.
, and
Liu
,
H.
,
2013
, “
Adaptive Sliding-Mode Control for Nonlinear Active Suspension Vehicle Systems Using T–S Fuzzy Approach
,”
IEEE Trans. Ind. Electron.
,
60
(
8
), pp.
3328
3338
.
5.
Liu
,
Y.-J.
,
Tong
,
S.
, and
Chen
,
C. L. P.
,
2013
, “
Adaptive Fuzzy Control Via Observer Design for Uncertain Nonlinear Systems With Unmodeled Dynamics
,”
IEEE Trans. Fuzzy Syst.
,
21
(
2
), pp.
275
288
.
6.
Su
,
X.
,
Wu
,
L.
,
Shi
,
P.
, and
Song
,
Y.-D.
,
2012
, “
H∞ Model Reduction of Takagi-Sugeno Fuzzy Stochastic Systems
,”
IEEE Trans. Syst., Man, Cybern., Part B Cybern.
,
42
(
6
), pp.
1574
1585
.
7.
Lam
,
H. K.
, and
Li
,
H.
,
2013
, “
Output-Feedback Tracking Control for Polynomial Fuzzy-Model-Based Control Systems
,”
IEEE Trans. Ind. Electron.
,
60
(
12
), pp.
5830
5840
.
8.
Zhu
,
B.
,
Zhang
,
Q.
, and
Chang
,
C.
,
2014
, “
Delay-Dependent Dissipative Control for a Class of Non-Linear System Via Takagi–Sugeno Fuzzy Descriptor Model With Time Delay
,”
IET Control Theory Appl.
,
8
(
7
), pp.
451
461
.
9.
Chang
,
Y.-H.
,
Chan
,
W.-S.
, and
Chang
,
C.-W.
,
2013
, “
T-S Fuzzy Model-Based Adaptive Dynamic Surface Control for Ball and Beam System
,”
IEEE Trans. Ind. Electron.
,
60
(
6
), pp.
2251
2263
.
10.
Chadli
,
M.
, and
Karimi
,
H. R.
,
2013
, “
Robust Observer Design for Unknown Inputs Takagi–Sugeno Models
,”
IEEE Trans. Fuzzy Syst.
,
21
(
1
), pp.
158
164
.
11.
Lam
,
H. K.
, and
Li
,
H.
,
2013
, “
Output-Feedback Tracking Control for Polynomial Fuzzy-Model-Based Control Systems
,”
IEEE Trans. Ind. Electron.
,
60
(
12
) pp.
5830
5840
.
12.
Sheng
,
L.
, and
Ma
,
X.
,
2014
, “
Stability Analysis and Controller Design of Interval Type-2 Fuzzy Systems With Time Delay
,”
Int. J. Syst. Sci.
,
45
(
5
), pp.
977
993
.
13.
Li
,
H.
,
Sun
,
X.
,
Shi
,
P.
, and
Lam
,
H. K.
,
2015
, “
Control Design of Interval Type-2 Fuzzy Systems With Actuator Fault Sampled-Data Control Approach
,”
Inform. Sci.
,
302
, pp.
1
13
.
14.
Li
,
H.
,
Wu
,
C.
,
Shi
,
P.
, and
Gao
,
Y.
,
2015
, “
Control of Nonlinear Networked Systems With Packet Dropouts: Interval Type-2 Fuzzy Model-Based Approach
,”
IEEE Trans. Cybern.
,
45
(
11
), pp.
2378
2389
.
15.
Pan
,
Y.
,
Li
,
H.
, and
Zhou
,
Q.
,
2014
, “
Fault Detection for Interval Type-2 Fuzzy Systems With Sensor Nonlinearities
,”
Neurocomputing
,
145
(
5
), pp.
488
494
.
16.
Hu
,
X.
,
Wu
,
L.
,
Hu
,
C.
, and
Gao
,
H.
,
2012
, “
Fuzzy Guaranteed Cost Tracking Control for a Flexible Air-Breathing Hypersonic Vehicle
,”
IET Control Theory Appl.
,
6
(
9
), pp.
1238
1249
.
17.
Sharma
,
K. D.
,
Chatterjee
,
A.
, and
Rakshit
,
A.
,
2012
, “
A PSO–Lyapunov Hybrid Stable Adaptive Fuzzy Tracking Control Approach for Vision-Based Robot Navigation
,”
IEEE Trans. Instrum. Meas.
,
61
(
7
), pp.
1908
1914
.
18.
Shen
,
Q.
,
Jiang
,
B.
,
Shi
,
P.
, and
Zhao
,
J.
,
2014
, “
Cooperative Adaptive Fuzzy Tracking Control for Networked Unknown Nonlinear Multiagent Systems With Time-Varying Actuator Faults
,”
IEEE Trans. Fuzzy Syst.
,
22
(
3
), pp.
494
504
.
19.
Wang
,
H.
,
Chen
,
B.
,
Liu
,
X.
,
Liu
,
K.
, and
Lin
,
C.
,
2013
, “
Robust Adaptive Fuzzy Tracking Control for Pure-Feedback Stochastic Nonlinear Systems With Input Constraints
,”
IEEE Trans. Cybern.
,
43
(
6
), pp.
2093
2104
.
20.
Gao
,
Y.
,
Shi
,
P.
,
Li
,
H.
, and
Nguang
,
S. K.
,
2015
, “
Output Tracking Control for Fuzzy Delta Operator Systems With Time-Varying Delays
,”
J. Franklin Inst.
,
352
(
1
), pp.
2951
2970
.
21.
Gassara
,
H.
,
El Hajjaji
,
A.
,
Kchaou
,
M.
, and
Chaabane
,
M.
,
2014
, “
Observer-Based (Q, V, R)-α-Dissipative Control for T-S Fuzzy Descriptor Systems With Time Delay
,”
J. Franklin Inst.
,
351
(
1
), pp.
187
206
.
22.
Escobar
,
G.
,
Mattavelli
,
P.
,
Hernandez-Gomez
,
M.
, and
Martinez-Rodriguez
,
P. R.
,
2014
, “
Filters With Linear-Phase Properties for Repetitive Feedback
,”
IEEE Trans. Ind. Electron.
,
61
(
1
), pp.
405
413
.
23.
She
,
J.-H.
,
Xin
,
X.
, and
Pan
,
Y.
,
2011
, “
Equivalent-Input-Disturbance Approach—Analysis and Application to Disturbance Rejection in Dual-Stage Feed Drive Control System
,”
IEEE/ASME Trans. Mechatron.
,
16
(
2
), pp.
330
340
.
24.
Liu
,
R.-J.
,
Liu
,
G. P.
,
Wu
,
M.
,
Xiao
,
F. C.
, and
She
,
J.
,
2013
, “
Robust Disturbance Rejection Based on Equivalent-Input-Disturbance Approach
,”
IET Control Theory Appl.
,
7
(
9
), pp.
1261
1268
.
25.
Zhou
,
L.
,
She
,
J.
,
Wu
,
M.
,
He
,
Y.
, and
Zhou
,
S.
,
2014
, “
Estimation and Rejection of Aperiodic Disturbance in a Modified Repetitive-Control System
,”
IET Control Theory Appl.
,
8
(
10
), pp.
882
889
.
You do not currently have access to this content.