Fixed-pitch quadrotors are popular research and hobby platforms largely due to their mechanical simplicity relative to other hovering aircraft. This simplicity, however, places fundamental limits on the achievable actuator bandwidth and the possible flight maneuvers. This paper shows that many of these limitations can be overcome by utilizing variable-pitch propellers on a quadrotor. A detailed analysis of the potential benefits of variable-pitch propellers over fixed-pitch propellers for a quadrotor is presented. This analysis is supported with experimental testing to show that variable-pitch propellers, in addition to allowing for generation of reverse thrust, substantially increase the maximum rate of thrust change. A nonlinear, quaternion-based control algorithm for controlling the quadrotor is also presented with an accompanying trajectory generation method that finds polynomial minimum-time paths based on actuator saturation levels. The control law and trajectory generation algorithms are implemented on a custom variable-pitch quadrotor. Several flight tests are shown, which highlight the benefits of a variable-pitch quadrotor over a standard fixed-pitch quadrotor for performing aggressive and aerobatic maneuvers.

References

1.
Amir
,
M. Y.
, and
Abbass
,
V.
,
2008
, “
Modeling of Quadrotor Helicopter Dynamics
,”
International Conference on Smart Manufacturing Application
(
ICSMA
), Gyeonggi-do, Apr. 9–11, pp.
100
105
.
2.
Erginer
,
B.
, and
Altug
,
E.
,
2007
, “
Modeling and PD Control of a Quadrotor VTOL Vehicle
,”
IEEE
Intelligent Vehicles Symposium
, Istanbul, Turkey, June 13–15, pp.
894
899
.
3.
Alpen
,
M.
,
Frick
,
K.
, and
Horn
,
J.
,
2009
, “
Nonlinear Modeling and Position Control of an Industrial Quadrotor With On-Board Attitude Control
,”
IEEE
International Conference on Robotics and Automation
, Christchurch, Dec. 10–11, pp.
2329
2334
.
4.
Kim
,
J.
,
Kang
,
M.
, and
Park
,
S.
,
2010
, “
Accurate Modeling and Robust Hovering Control for a Quad–Rotor VTOL Aircraft
,”
J. Intell. Rob. Syst.
,
57
(
1
), pp.
9
26
.
5.
Huang
,
H.
,
Hoffmann
,
G.
,
Waslander
,
S.
, and
Tomlin
,
C.
,
2009
, “
Aerodynamics and Control of Autonomous Quadrotor Helicopters in Aggressive Maneuvering
,”
IEEE
International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
3277
3282
.
6.
Gurdan
,
D.
,
Stumpf
,
J.
,
Achtelik
,
M.
,
Doth
,
K. M.
,
Hirzinger
,
G.
, and
Rus
,
D.
,
2007
, “
Energy-Efficient Autonomous Four-Rotor Flying Robot Controlled at 1 kHz
,”
IEEE
International Conference on Robotics and Automation
, Rome, Italy, Apr. 10–14, pp.
361
366
.
7.
Michael
,
N.
,
Mellinger
,
D.
,
Lindsey
,
Q.
, and
Kumar
,
V.
,
2010
, “
The GRASP Multiple Micro-UAV Testbed
,”
IEEE Rob. Autom. Mag.
,
17
(
3
), pp.
56
65
.
8.
Gillula
,
J.
,
Huang
,
H.
,
Vitus
,
M.
, and
Tomlin
,
C.
,
2010
, “
Design of Guaranteed Safe Maneuvers Using Reachable Sets: Autonomous Quadrotor Aerobatics in Theory and Practice
,”
IEEE
International Conference on Robotics and Automation
, Anchorage, AK, May 3–7, pp.
1649
1654
.
9.
Hoffmann
,
G.
,
Waslander
,
S.
, and
Tomlin
,
C.
,
2008
, “
Quadrotor Helicopter Trajectory Tracking Control
,”
AIAA
Paper No. 2008-7410.
10.
Ritz
,
R.
,
Hehn
,
M.
,
Lupashin
,
S.
, and
D’Andrea
,
R.
,
2011
, “
Quadrocopter Performance Benchmarking Using Optimal Control
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sep. 25–30, pp.
5179
5186
.
11.
Mellinger
,
D.
, and
Kumar
,
V.
,
2011
, “
Minimum Snap Trajectory Generation and Control for Quadrotors
,”
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
2520
2525
.
12.
Shen
,
S.
,
Mulgaonkar
,
Y.
,
Michael
,
N.
, and
Kumar
,
V.
,
2013
, “
Vision-Based State Estimation and Trajectory Control Towards Aggressive Flight With a Quadrotor
,”
Robotics: Science and Systems
, pp.
1
8
.
13.
Pounds
,
P.
, and
Mahony
,
R.
,
2009
, “
Design Principles of Large Quadrotors for Practical Applications
,”
IEEE
International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
3265
3270
.
14.
Kushleyev
,
A.
,
Mellinger
,
D.
,
Powers
,
C.
, and
Kumar
,
V.
,
2013
, “
Towards a Swarm of Agile Micro Quadrotors
,”
Auton. Rob.
,
35
(
4
), pp.
287
300
.
15.
Driessens
,
S.
, and
Pounds
,
P. E.
,
2013
, “
Towards a More Efficient Quadrotor Configuration
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
1386
1392
.
16.
Borenstein
,
J.
,
1992
, “
The Hoverbot, an Electrically Powered Flying Robot
,” http://www.cs.cmu.edu/∼motionplanning/papers/sbp_papers/integrated1/borenstein_hovercraft.pdf
17.
d’Ambrosio
,
G.
, and
Navoni
,
R.
, “
HG3 Willy
,” You Tube video, 3:21, July 2001, http://youtu.be/M4uXmekZk-4
18.
Michini
,
B.
,
Redding
,
J.
,
Ure
,
N. K.
,
Cutler
,
M.
, and
How
,
J. P.
,
2011
, “
Design and Flight Testing of an Autonomous Variable-Pitch Quadrotor
,”
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
2978
2979
.
19.
Chen
,
H.
, “
Variable-Pitch Quadrotor
,” You Tube video, 3:17, July 2011, http://youtu.be/fkSx3fSz0tE
20.
Lupashin
,
S.
, and
D’Andrea
,
R.
,
2012
, “
Adaptive Fast Open-Loop Maneuvers for Quadrocopters
,”
Auton. Rob.
,
33
(
1–2
), pp.
89
102
.
21.
Mellinger
,
D.
,
Michael
,
N.
, and
Kumar
,
V.
,
2012
, “
Trajectory Generation and Control for Precise Aggressive Maneuvers With Quadrotors
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
664
674
.
22.
Muller
,
M.
,
Lupashin
,
S.
, and
D’Andrea
,
R.
,
2011
, “
Quadrocopter Ball Juggling
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sep. 25–30, pp.
5113
5120
.
23.
Ritz
,
R.
,
Muller
,
M.
,
Hehn
,
M.
, and
D’Andrea
,
R.
,
2012
, “
Cooperative Quadrocopter Ball Throwing and Catching
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Vilamoura, Oct. 7–12, pp.
4972
4978
.
24.
Hehn
,
M.
, and
D’Andrea
,
R.
,
2011
, “
A Flying Inverted Pendulum
,”
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13. pp.
763
770
.
25.
Abbeel
,
P.
,
Coates
,
A.
, and
Ng
,
A. Y.
,
2010
, “
Autonomous Helicopter Aerobatics Through Apprenticeship Learning
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1608
1639
.
26.
Cutler
,
M.
,
Ure
,
N. K.
,
Michini
,
B.
, and
How
,
J. P.
,
2011
, “
Comparison of Fixed and Variable Pitch Actuators for Agile Quadrotors
,”
AIAA
Paper No. 2011-6406.
27.
Cutler
,
M.
, and
How
,
J. P.
,
2012
, “
Actuator Constrained Trajectory Generation and Control for Variable-Pitch Quadrotors
,”
AIAA
Paper No. 2012-4777.
28.
Drela
,
M.
,
2009
, “
Qprop Users Guide
,” http://web.mit.edu/drela/Public/web/qprop/
29.
Hemati
,
N.
, and
Leu
,
M.
,
1992
, “
A Complete Model Characterization of Brushless DC Motors
,”
IEEE Trans. Ind. Appl.
,
28
(
1
), pp.
172
180
.
30.
Colton
,
S. W.
,
2010
, “
Design and Prototyping Methods for Brushless Motors and Motor Control
,” Master’s thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
31.
Bristeau
,
P.
,
Martin
,
P.
,
Salaun
,
E.
, and
Petit
,
N.
,
2009
, “
The Role of Propeller Aerodynamics in the Model of a Quadrotor UAV
,”
European Control Conference
, pp.
683
688
.
32.
Drela
,
M.
,
1989
, “
Xfoil: An Analysis and Design System for Low Reynolds Number Airfoils
,” Low Reynolds Number Aerodynamics, pp.
1
12
, http://web.mit.edu/drela/Public/web/xfoil/
33.
Kuipers
,
J. B.
,
2002
,
Quaternions and Rotation Sequences: A Primer With Applications to Orbits, Aerospace, and Virtual Reality
,
Princeton University
,
Princeton, NJ
.
34.
Turpin
,
M.
,
Michael
,
N.
, and
Kumar
,
V.
,
2012
, “
Trajectory Design and Control for Aggressive Formation Flight With Quadrotors
,”
Auton. Rob.
,
33
(
1–2
), pp.
143
156
.
35.
Lupashin
,
S.
,
Schollig
,
A.
,
Sherback
,
M.
, and
D’Andrea
,
R.
,
2010
, “
A Simple Learning Strategy for High-Speed Quadrocopter Multi-Flips
,”
IEEE
International Conference on Robotics and Automation
, Anchorage, AK, May 3–7, pp.
1642
1648
.
36.
Hehn
,
M.
, and
D’Andrea
,
R.
,
2011
, “
Quadrocopter Trajectory Generation and Control
,”
World Congress, Vol.
18
, pp.
1485
1491
.
37.
Markley
,
F.
,
2002
, “
Fast Quaternion Attitude Estimation From Two Vector Measurements
,”
J. Guid., Control, Dyn.
,
25
(
2
), pp.
411
414
.
38.
Chaturvedi
,
N.
,
Sanyal
,
A.
, and
McClamroch
,
N.
,
2011
, “
Rigid-Body Attitude Control
,”
IEEE Control Syst.
,
31
(
3
), pp.
30
51
.
39.
Baruh
,
H.
,
1999
,
Analytical Dynamics
,
WCB/McGraw-Hill
,
New York
.
40.
Michini
,
B.
,
2009
, “
Modeling and Adaptive Control of Indoor Unmanned Aerial Vehicles
,” Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge MA.
41.
Wie
,
B.
, and
Barba
,
P. M.
,
1985
, “
Quaternion Feedback for Spacecraft Large Angle Maneuvers
,”
AIAA J.
,
8
(
3
), pp.
360
365
.
42.
How
,
J. P.
,
Frazzoli
,
E.
, and
Chowdhary
,
G. V.
,
2015
, “
Linear Flight Control Techniques for Unmanned Aerial Vehicles
,”
Handbook of Unmanned Aerial Vehicles
,
Springer
,
New York
, pp.
529
576
.
43.
Girish
,
C. V.
,
Emilio
,
F.
,
Jonathan
,
H. P.
, and
Hugh
,
L.
,
2015
, “
Nonlinear Flight Control Techniques for Unmanned Aerial Vehicles
,”
Handbook of Unmanned Aerial Vehicles
,
Springer
,
New York
, pp.
577
612
.
44.
Van Der Merwe
,
R.
, and
Wan
,
E. A.
,
2004
, “
Sigma-Point Kalman Filters for Integrated Navigation
,”
60th Annual Meeting of the Institute of Navigation
, pp.
641
654
.
45.
Valenti
,
M.
,
Bethke
,
B.
,
Fiore
,
G.
,
How
,
J. P.
, and
Feron
,
E.
,
2006
, “
Indoor Multi-Vehicle Flight Testbed for Fault Detection, Isolation, and Recovery
,”
AIAA
Paper No. 2006-6200.
46.
How
,
J. P.
,
Bethke
,
B.
,
Frank
,
A.
,
Dale
,
D.
, and
Vian
,
J.
,
2008
, “
Real-Time Indoor Autonomous Vehicle Test Environment
,”
IEEE Control Syst. Mag.
,
28
(
2
), pp.
51
64
.
You do not currently have access to this content.