A switched feedback control law is derived for an autonomous pursuing agent that attempts to intercept an evading agent whose dynamics are initially unknown. The model of the pursuer’s dynamics is known perfectly, and the evader is modeled as a disturbance. A new method is presented to efficiently update the pursuer’s control law as measurements of the parameters that govern the evader’s dynamics are received. Using a graph theoretical approach, the control law updates are limited to specific partitions of the state space, which eliminate many unneeded calculations. Results show increases in the time efficiency of the update calculations compared to traditional control law generation methods with a minimal loss in accuracy. An 11.6% overall decrease in calculation time over traditional methods and a 1% error rate compared to the true solution is achieved when solving the homicidal chauffeur game. We show how actual gains in time efficiency depend on the specific application of the controller and the size of the state space grid approximation. Both the theoretical development and implementation of the switched feedback controller are discussed.

References

1.
Brooks
,
R. R.
,
Pang
,
J.-E.
, and
Griffin
,
C.
, 2008, “
Game and Information Theory Analysis of Electronic Countermeasures in Pursuit-Evasion Games
,”
IEEE Trans. Syst. Man Cybern. Part A. Syst. Humans
,
38
(
6
), pp.
1281
1293
.
2.
Olgac
,
N.
,
Sipahi
,
R.
, and
Ergenc
,
A. F.
, 2003, “
The Homicidal Chauffeur Problem With Time Delayed Feedback
,”
ASME Dyn. Syst. Control Div.
,
2003
(
37130
), pp.
1053
1054
.
3.
Gerkey
,
B. P.
,
Thrun
,
S.
, and
Gordon
,
G.
, 2006, “
Visibility-Based Pursuit-Evasion With Limited Field of View
,”
Int. J. Rob. Res.
,
25
(
4
), pp.
299
315
.
4.
Getz
,
W. M.
, and
Pachter
,
M.
, 1981, “
Two-Target Pursuit-Evasion Differential Games in the Plane
,”
J. Optim. Theory Appl.
,
34
, pp.
383
403
.
5.
Merz
,
A. W.
, 1989, “
Implementing Air Combat Guidance Laws
,”
J. Dyn. Syst., Meas., Control
,
111
(
4
), pp.
605
608
.
6.
Givigi
,
S. N.
, Jr.
,
Schwartz
,
H. M.
, and
Lu
,
X.
, 2010, “
A Reinforcement Learning Adaptive Fuzzy Controller for Differential Games
,”
J. Intell. Rob. Syst.
59
(
1
), pp.
3
30
.
7.
Sinha
,
A.
, and
Ghose
,
D.
, 2007, “
Control of Multiagent Systems Using Linear Cyclic Pursuit With Heterogenous Controller Gains
,”
J. Dyn. Syst., Meas., Control
,
129
(
5
), pp.
742
748
.
8.
Bopardikar
,
S.
,
Bullo
,
F.
, and
Hespanha
,
J.
, 2008, “
On Discrete-Time Pursuit-Evasion Games With Sensing Limitations
,”
IEEE Trans. Rob. Autom.
,
24
(
6
), pp.
1429
1439
.
9.
McEneaney
,
W.
, 2007, “
A Curse-of-Dimensionality-Free Numerical Method for Solution of Certain HJB PDEs
,”
SIAM J. Control Optim.
,
46
(
4
), pp.
1239
1276
.
10.
Werbos
,
P.
, 2004, “
ADP: Goals, Opportunities, and Principles
,”
Handbook of Learning and Approximate Dynamic Programming
,
J.
Si
,
A. G.
Barto
,
W. B.
Powell
, and
D. W.
,
II
, eds.
IEEE Press
,
Piscataway, NJ
.
11.
Fudenberg
,
D.
, and
Levine
,
D. K.
, 1998,
The Theory of Learning in Games
, Vol.
1
,
MIT Press
,
Cambridge, MA
.
12.
Isaacs
,
R.
, 1965,
Differential Games
,
John Wiley and Sons, Inc.
,
New York, NY
.
13.
Cristiani
,
E.
, and
Falcone
,
M.
, 2006, “
A Fast Marching Method for Pursuit-Evasion Games
,”
Commun. SIMAI Congr.
,
1
.
14.
Falcone
,
M.
, 2006, “
Numerical Methods for Differential Games Based on Partial Differential Equations
,”
Int. Game Theory Rev.
,
8
(
2
), pp.
231
272
.
15.
Krasovskii
,
N. N.
,
Subbotin
,
A. I.
, and
Kotz
,
S.
, 1987,
Game-Theoretical Control Problems
,
Springer Verlag
,
New York, NY
.
16.
Caputo
,
M. R.
, 2005,
Foundations of Dynamic Economic Analysis
,
Cambridge University Press
,
Cambridge, UK
.
17.
Patsko
,
V.
, and
Turova
,
V. L.
, 1999, “
Numerical Study of the Homicidal Chauffeur Game
,”
Proceedings of the Ninth International Colloquium on Differential Equations
,
D.
Bainov
, ed.
18.
Gmytrasiewicz
,
P.
, and
Doshi
,
P.
, 2005, “
A Framework for Sequential Planning in Multi-Agent Settings
,”
J. Artif. Intell. Res.
,
24
, pp.
49
79
.
19.
Doshi
,
P.
, and
Gmytrasiewicz
,
P. J.
, 2009, “
Monte Carlo Sampling Methods for Approximating Interactive POMDPs
,”
J. Artif. Intell. Res.
,
34
, pp.
297
337
.
20.
Chang
,
H. S.
, and
Marcus
,
S. I.
, 2003, “
Two-Person Zero-Sum Markov Games: Receding Horizon Approach
,”
IEEE Trans. Autom. Control
,
48
(
11
), pp.
1951
1961
.
21.
Hespanha
,
J.
,
Prandini
,
M.
, and
Sastry
,
S.
, 2000, “
Probabilistic Pursuit-Evasion Games: A One-Step Nash Approach
,”
Proceedings of the 39th IEEE Conference on Decision and Control
, pp.
2272
2277
.
22.
Goode
,
B.
,
Kurdila
,
A.
, and
Roan
,
M.
, 2010, “
Pursuit-Evasion With Acoustic Sensing Using One Step Nash Equilibria
,”
American Control Conference (ACC)
, pp.
1925
1930
.
23.
Goode
,
B.
,
Kurdila
,
A.
, and
Roan
,
M.
, 2010, “
Adaptive Fuzzy Control of Switched Objective Functions in Pursuit-Evasion Scenarios
,”
IEEE Conference on Decision and Control (CDC)
, pp.
5762
5767
.
24.
Goode
,
B.
,
Kurdila
,
A.
, and
Roan
,
M.
, 2011, “
A Graph Theoretical Approach Toward a Switched Feedback Controller for Pursuit Evasion Scenarios
,”
Proceedings of the American Control Conference
, pp.
4804
4809
.
25.
Zavlanos
,
M.
, and
Pappas
,
G.
, 2007, “
Distributed Hybrid Control for Multiple-Pursuer Multiple-Evader Games
,”
Hybrid Systems: Computation and Control
,
A.
Bemporad
,
A.
Bicchi
, and
G.
Buttazzo
, eds., Vol.
4416
of Lecture Notes in Computer Science,
Springer
,
Berlin, Heidelberg
, pp.
787
789
.
26.
Derenick
,
J. C.
,
Spletzer
,
J. R.
, and
Hsieh
,
M. A.
, 2009, “
An Optimal Approach to Collaborative Target Tracking With Performance Guarantees
,”
J. Intell. Rob. Syst.
,
56
(
1–2
), pp.
47
67
.
27.
Xu
,
B.
,
Kurdila
,
A.
, and
Stilwell
,
D.
, 2009, “
A Hybrid Receding Horizon Control Method for Path Planning in Uncertain Environments
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, IROS 2009
, pp.
4887
4892
.
28.
Murrieta-Cid
,
R.
,
Muppirala
,
T.
,
Sarmiento
,
A.
,
Bhattacharya
,
S.
, and
Hutchinson
,
S.
, 2007, “
Surveillance Strategies for a Pursuer With Finite Sensor Range
,”
Int. J. Rob. Res.
,
26
, pp.
233
253
.
29.
Guilamo
,
L.
,
Tovar
,
B.
, and
Lavalle
,
S. M.
, 2004, “
Pursuit-Evasion in an Unknown Environment Using Gap Navigation Graphs
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
.
30.
Andrásfai
,
B.
, 1991,
Graph Theory: Flows, Matrices
,
Akadémiai Kiadó
,
Budapest, Hungary
.
31.
Prasolov
,
V. V.
, and
Ivanov
,
S.
, 1994, “
Translations of mathematical monographs
,”
Problems and Theorems in Linear Algebra
, Vol.
134
,
American Mathematical Society
,
Providence, RI
.
32.
Choi
,
H.-L.
,
Tahk
,
M.-J.
, and
Bang
,
H.
, 2006, “
Neural Network Guidance Based on Pursuit-Evasion Games With Enhanced Performance
,”
Control Eng. Pract.
,
14
(
7
), pp.
735
742
.
33.
Desouky
,
S. F.
, and
Schwartz
,
H. M.
, 2011, “
Self-Learning Fuzzy Logic Controllers for Pursuit-Evasion Differential Games
,”
Rob. Auton. Syst.
,
59
(
1
), pp.
22
33
.
34.
Koren
,
Y.
, and
Borenstein
,
J.
, 1991, “
Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation
,”
Proceedings 1991 IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1398
1404
.
35.
Goode
,
B.
,
Kurdila
,
A.
, and
Roan
,
M.
, 2011, “
Performance of a Switching Controller for Pursuit-Evasion Scenarios With Noisy Measurements
,
Proceedings of the IASTED Conference on Control and Applications
(to be published) pp.
217
224
..
36.
Khalil
,
H. K.
, 2002,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
New Jersey
.
37.
Strogatz
,
S.
, 1994,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering
,
Westview
,
Cambridge, MA
.
You do not currently have access to this content.