This paper presents an investigation into the nonlinear effect of squeeze-film damping on the response of a clamped–clamped microbeam to mechanical shock. In this work, we solve simultaneously the nonlinear Reynolds equation, to model squeeze-film damping, coupled with a nonlinear Euler–Bernoulli beam equation. A Galerkin-based reduced-order model and a finite-difference method are utilized for the solid domain and fluid domain, respectively. Several results demonstrating the effect of gas pressure on the response of the microbeams are shown. Comparison with the results of a fully coupled multiphysics nonlinear finite-element model is presented. The results indicate that, for devices operating in air, squeeze-film damping can be used effectively to minimize the displacements of released microstructures during shock and impact. The results also indicate that squeeze-film damping has more significant effect on the response of microstructures in the dynamic shock regime compared to the quasi-static shock regime. A computationally efficient approach is proposed to model the fluidic-structural problem more efficiently based on a nonlinear analytical expression of the squeeze-film damping.

References

1.
Srikar
,
V. T.
, and
Senturia
,
S. D.
2002, “
The Reliability of Microelectromechanical Systems (MEMS) in Shock Environments
,”
J. Microelectromech. Syst.
,
11
, pp.
206
214
.
2.
Jordy
,
D.
, and
Younis
,
M. I.
, 2008, “
Characterization of the Dynamical Response of a Micromachined G-Sensor to Mechanical Shock Loading
,”
ASME J. Dyn. Syst. Meas. Control
,
130
(
4
), p.
041003
.
3.
Li
,
G. X.
, and
Shemansky
,
J. R.
, 2000, “
Drop Test and Analysis on Micro-Machined Structures
,”
Sens. Actuators A
,
85
, pp.
280
286
.
4.
Sheehy
,
M.
,
Lishchynska
,
M.
,
Punch
,
J.
,
Goyal
,
S.
, and
Kelly
,
G.
, 2008, “
The Response of Micro-Scale Devices Subjecte to High-g Impact Stimuli
,”
Proceedings of the SEM 11th International Congress and Exposition on Experimental and Applied Mechanics
,
Orlando
,
FL
.
5.
Coster
,
J. D.
,
Tilmans
,
H. C.
,
van Beek
,
J. T. M.
,
Rijks
,
T. G. S. M.
, and
Puers
,
R.
, 2004, “
The Influence of Mechanical Shock on the Operation of Electrostatically Driven RF-MEMS Switches
,”
J. Micromech. Microeng.
,
14
,
S49
S54
.
6.
Kimberley
,
J.
,
Cooney
,
R. S.
,
Lambros
,
J.
,
Chasiotis
,
I.
, and
Barker
,
N. S.
, 2009, “
Failure of Au RF-MEMS Switches Subjected to Dynamic Loading
,”
Sens. Actuators A
,
154
, pp.
140
148
.
7.
Ibrahim
,
M. I.
, and
Younis
,
M. I.
, 2010, “
The Dynamic Response of Electrostatically Driven Resonators Under Mechanical Shock
,”
J. Micromech. Microeng.
,
20
, p.
025006
.
8.
Tas
,
N.
,
Sonnenberg
,
T.
,
Jansen
,
H.
,
Legtenberg
,
R.
, and
Elwenspoek
,
M.
, 1996, “
Stiction in Surface Micromachining
,”
J. Micromech. Microeng.
,
6
, pp.
385
397
.
9.
Younis
,
M. I.
,
Alsaleem
,
F.
, and
Jordy
,
D.
, 2007, “
The Response of Clamped-Clamped Microbeams Under Mechanical Shock
,”
Int. J. Nonlinear Mech.
,
42
, pp.
643
657
.
10.
Khatami
,
F.
, and
Rezazadeh
,
G.
, 2008, “
Dynamic Response of a Torsional Micromirror to Electrostatic Force and Mechanical Shock
,”
Microsyst. Technol.
,
15
, pp.
535
545
.
11.
Alsaleem
,
F.
,
Younis
,
M. I.
, and
Miles
,
R.
, 2008, “
An Investigation for the Effects of Packaging on the Response of a MEMS Device Under Mechanical Shock Loads
,”
ASME J. Electron. Packag.
,
130
, p.
031002
.
12.
Alsaleem
,
F. M.
,
Younis
,
M. I.
, and
Ibrahim
,
M.
, 2009, “
A Study for the Effect of the PCB Motion and Electrostatic Force on the Dynamics of MEMS Devices Under Mechanical Shock
,”
J. Microelectromech. Syst.
,
18
, pp.
597
609
.
13.
Blech
,
J. J.
, 1983, “
On Isothermal Squeeze Films
,”
J. Lubr. Technol.
,
105
, pp.
615
620
.
14.
Younis
,
M. I.
,
Alsaleem
,
F. M.
,
Miles
,
R.
, and
Su
,
Q.
, 2007, “
Characterization for the Performance of Capacitive Switches Activated by Mechanical Shock
,”
J. Micromech. Microeng.
,
17
, pp.
1360
1370
.
15.
Suhir
,
E.
, 2002, “
Could Shock Tests Adequately Mimic Drop Test Conditions?
,”
ASME J. Electron. Packag.
,
124
, pp.
170
177
.
16.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
, 2004, “
A New Approach to the Modeling and Simulation of Flexible Microstructures under the Effect of Squeeze-Film Damping
,”
J. Micromech. Microeng.
,
14
, pp.
170
181
.
17.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2007, “
Simulation of Squeeze-Film Damping of Microplates Actuated by Large Electrostatic Load
,”
ASME J. Comput. Nonlinear Dyn.
,
2
, pp.
232
241
.
18.
Veijola
,
T.
,
Kuisma
,
H.
,
Lahdenpera
,
J.
, and
Ryhanen
,
T.
, 1995, “
Equivalent-Circuit Model of the Squeezed Gas Film in a Silicon Accelerometer
,”
Sens. Actuators A
,
48
, pp.
239
248
.
19.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2003, “
A Reduced-Order Model for Electrically Actuated Microbeam Based MEMS
,”
J. Microelectromech. Syst.
,
12
, pp.
672
680
.
20.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
, 2005, “
Reduced-Order Models for MEMS Applications
,”
J. Nonlinear Dyn.
,
41
, pp.
211
236
.
21.
Meirovitch
,
L.
, 2001,
Fundamentals of Vibrations
,
McGraw-Hill
,
Boston
.
22.
Younis
,
M. I.
,
Jordy
,
D.
, and
Pitarresi
,
J.
, 2007, “
Computationally Efficient Approaches to Characterize the Dynamic Response of Microstructures Under Mechanical Shock
,”
J. Microelectromech. Syst.
,
16
, pp.
628
638
.
23.
Solid State Technology Association, 2001, JEDEC Mechanical Shock Standard No. JESD22-B104-B.
24.
COMSOL Multiphysic, Inc., 2007, Version 3.4, www.COMSOL.comwww.COMSOL.com, 2009.
25.
Krylov
,
S.
, and
Maimon
,
R.
, 2004, “
Pull-in Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force
,”
Trans. ASME, J. Vib. Acoust.
,
126
, pp.
332
342
.
You do not currently have access to this content.