This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.

1.
Wang
,
J. F.
, and
Périaux
,
J.
, 2001, “
Multi-Point Optimization Using GAs and Nash/Stackelberg Games for High Lift Multi-Airfoil Design in Aerodynamics
,”
Evolutionary Computation, 2001. Proceedings of the 2001 Congress on Evolutionary Computation CEC2001
, Vol.
1
, Issue
2001
, pp.
552
559
.
2.
Tang
,
Z.
,
Périaux
,
J.
, and
Désidéri
,
J. -A.
, 2005, “
Multi Criteria Robust Design Using Adjoint Methods and Game Strategies for Solving Drag Optimization Problems With Uncertainties
,”
East West High Speed Flow Fields Conference 2005
, Beijing, China, Oct. 19–22, pp.
487
493
.
3.
Lee
,
D. S.
,
Gonzalez
,
L. F.
,
Srinivas
,
K.
, and
Periaux
,
J.
, 2008, “
Robust Evolutionary Algorithms for UAV/UCAV Aerodynamic and RCS Design Optimisation
,”
International Journal Computers and Fluids
,
37
(
5
), pp.
547
564
.
4.
Lee
,
D. S.
,
Gonzalez
,
L. F.
,
Srinivas
,
K.
, and
Periaux
,
J.
, 2008, “
Robust Design Optimisation Using Multi-Objective Evolutionary Algorithms
,”
International Journal Computers and Fluids
,
37
(
5
), pp.
565
583
.
5.
NiKolos
,
I. K.
,
Tsourveloudis
,
N. C.
, and
Valavanis
,
K. P.
, 2001, “
Evolutionary Algorithm Based Off-Line Path Planner for UAV Navigation
,”
Automatika: J. Contr. Measure. ELectron. Comput. Commun.
,
42
(
3–4
), pp.
143
150
.
6.
Jia
,
D.
, and
Vagners
,
J.
, 2004, “
Parallel Evolutionary Algorithms for UAV Path Planning
,”
Proceeding of the AIAA First Intelligent Systems Technical Conference
, Chicago, IL, Sept. 20–22.
7.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
, 2002, “
A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
1089-778X,
6
(
2
), pp.
182
197
.
8.
Periaux
,
J.
,
Gonzalez
,
L. F.
,
Whitney
,
E. J.
, and
Srinivas
,
K.
, 2006, “
MOO Methods for Multidisciplinary Design Using Parallel Evolutionary Algorithms, Game Theory and Hierarchical Topology: Practical Application to the Design and Optimisation of UAV Systems (Part 1) Von Karman Institute (VKI) Lecture Series
,”
Introduction to Multidisciplinary to Optimization and Multidisciplinary Design: Applications to Aeronautics and Turbomachinery
, March 6–10.
9.
Sefrioui
,
M.
, and
Periaux
,
J.
, 2000, “
Nash Genetic Algorithms: Examples and Applications
,”
Proceedings of the 2000 Congress on Evolutionary Computation CEC00
,
IEEE
,
La Jolla, CA
, pp.
509
516
.
10.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Chichester, UK
.
11.
Deb
,
K.
, and
Agrawal
,
R. B.
, 1995, “
Simulated Binary Crossover for Continuous Search Space
,”
Complex Syst.
0891-2513,
9
(
2
), pp.
115
148
.
12.
Lee
,
D. S.
, 2008,
Uncertainty Based Multi-Objective and Multidisciplinary Design Optimization in Aerospace Engineering
,
University of Sydney
,
Sydney, NSW, Australia
, Sec. 10.7, pp.
348
370
.
13.
Zitzler
,
E.
,
Deb
,
K.
, and
Thiele
,
L.
, 2000, “
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
,”
Evol. Comput.
1063-6560,
8
(
2
), pp.
173
195
.
You do not currently have access to this content.