Magnetic tape is a flexible mechanical structure having dimensions that are orders of magnitude different in its thickness, width, and length directions. In order to position the tape relative to the read/write head, guides constrain the tape’s lateral motion, but even the modest forces that develop during guiding can cause wear and damage to the tape’s edges. This paper presents a tensioned axially-moving viscoelastic Euler–Bernoulli beam model used to simulate the tape’s lateral dynamics, the guiding forces, and the position error between the data tracks and the read/write head. Lateral vibration can be excited by disturbances in the form of pack runout, flange impacts, precurvature of the tape in its natural unstressed state, and spiral stacking as tape winds onto the take-up pack. The guide model incorporates nonlinear characteristics including preload and deadbands in displacement and restoring force. A tracking servo model represents the ability of the read/write head’s actuator to track disturbances in the tape’s motion, and the actuator’s motion couples through friction with the tape’s vibration. Low frequency excitation arising from pack runout can excite high frequency position error because of the nonlinear characteristics of the guides and impacts against the pack’s flanges. The contact force developed between the tape and the packs’ flanges can be minimized without significantly increasing the position error by judicious selection of the flanges’ taper angle.

1.
Childers
,
E. R.
,
Imaino
,
W.
,
Eaton
,
J. H.
,
Jaquette
,
G. A.
,
Koeppe
,
P. V.
, and
Hellman
,
D. J.
, 2003, “
Six Orders of Magnitude in Linear Tape Technology: The One-Terabyte Project
,”
IBM J. Res. Dev.
0018-8646,
47
, pp.
471
482
.
2.
2005, “
International Magnetic Tape Storage Roadmap
,”
D.
Mee
, ed., Information Storage Industry Consortium.
3.
Boyle
,
J. M.
, and
Bhushan
,
B.
, 2006, “
Vibration Modeling of Magnetic Tape With Vibro-Impact of Tape-Guide Contact
,”
J. Sound Vib.
0022-460X,
289
, pp.
632
655
.
4.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1988, “
Current Research on the Vibration and Stability of Axially-Moving Materials
,”
Shock Vib. Dig.
0583-1024,
20
, pp.
3
13
.
5.
Chen
,
L. -Q.
, 2005, “
Analysis and Control of Transverse Vibrations of Axially Moving Strings
,”
Appl. Mech. Rev.
0003-6900,
58
, pp.
91
116
.
6.
Young
,
G. E.
, and
Reid
,
K. N.
, 1993, “
Lateral and Longitudinal Dynamic Behavior and Control of Moving Webs
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
, pp.
309
317
.
7.
Sievers
,
L.
,
Balas
,
M.
, and
von Flotow
,
A.
, 1988, “
Modeling of Web Conveyance Systems for Multivariable Control
,”
IEEE Trans. Autom. Control
0018-9286,
33
, pp.
524
531
.
8.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1990, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
738
744
.
9.
Benson
,
R. C.
, 2002, “
Lateral Dynamics of a Moving Web With Geometrical Imperfection
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
25
34
.
10.
Jha
,
R. K.
, and
Parker
,
R. G.
, 2000, “
Spatial Discretization of Axially Moving Media Vibration Problems
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
290
294
.
11.
Pellicano
,
F.
, and
Vestroni
,
F.
, 2000, “
Nonlinear Dynamics and Bifurcations of an Axially Moving Beam
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
21
30
.
12.
Wickert
,
J. A.
, 1992, “
Non-Linear Vibration of a Traveling Beam
,”
Int. J. Non-Linear Mech.
0020-7462,
27
, pp.
503
517
.
13.
Goldade
,
A. V.
, and
Bhushan
,
B.
, 2004, “
Tape Edge Study in a Linear Tape Drive With Single-Flanged Guides
,”
J. Magn. Magn. Mater.
0304-8853,
271
, pp.
409
430
.
14.
Kartik
,
V.
, and
Wickert
,
J. A.
, 2006, “
Vibration and Guiding of Moving Media With Edge Weave Imperfections
,”
J. Sound Vib.
0022-460X,
291
, pp.
419
436
.
15.
Chakraborty
,
G.
, and
Mallik
,
A. K.
, 1999, “
Non-Linear Vibration of a Travelling Beam Having an Intermediate Guide
,”
Nonlinear Dyn.
0924-090X,
20
, pp.
247
265
.
16.
Eaton
,
J. H.
, 1998, “
Behavior of a Tape Path With Imperfect Components
,”
Adv. Inf. Storage Syst.
1053-184X,
8
, pp.
77
91
.
17.
Richards
,
D. B.
, and
Sharrock
,
M. P.
, 1998, “
Key Issues in the Design of Magnetic Tapes for Linear Systems of High Track Density
,”
IEEE Trans. Magn.
0018-9464,
34
, pp.
1878
1882
.
18.
Mathur
,
P. D.
, and
Messner
,
W. C.
, 1998, “
Frequency Domain Characterization of Take-Up Reel Air-Entrainment in Low-Tension and High-Speed Tape Transport
,”
ASME J. Tribol.
0742-4787,
120
, pp.
554
558
.
19.
Keshavan
,
M. B.
, and
Wickert
,
J. A.
, 1997, “
Air Entrainment During Steady-State Web Winding
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
916
922
.
20.
Keshavan
,
M. B.
, and
Wickert
,
J. A.
, 1998, “
Transient Discharge of Entrained Air From a Wound Roll
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
804
810
.
21.
Weick
,
B. L.
, 2006, “
Viscoelastic Analysis Applied to the Determination of Long-Term Creep Behavior for Magnetic Tape Materials
,”
J. Appl. Polym. Sci.
0021-8995,
102
, pp.
1106
1128
.
22.
Mockensturm
,
E. M.
, and
Guo
,
J.
, 2005, “
Nonlinear Vibration of Parametrically Excited, Viscoelastic, Axially Moving Strings
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
374
380
.
23.
Flügge
,
W.
, 1967,
Viscoelasticity
,
Blaisdell
,
Berlin, Germany
.
24.
Feng
,
G.
, and
Ngan
,
A. H. W.
, 2002, “
Effects of Creep and Thermal Drift on Modulus Measurement Using Depth-Sensing Indentation
,”
J. Mater. Res.
0884-2914,
17
, pp.
660
668
.
25.
Shelton
,
J. J.
, and
Reid
,
K. N.
, 1971, “
Lateral Dynamics of a Real Moving Web
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
93
, pp.
180
186
.
26.
Garziera
,
R.
, and
Amabili
,
M.
, 2000, “
Damping Effect of Winding on the Lateral Vibrations of Axially Moving Tapes
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
49
53
.
27.
Ono
,
K.
, 1979, “
Lateral Motion of an Axially Moving String Over a Cylindrical Guide Surface
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
905
912
.
28.
Wilson
,
E. L.
,
Farhoomand
,
I.
, and
Bathe
,
K. J.
, 1973, “
Nonlinear Dynamic Analysis of Complex Structures
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
1
, pp.
241
252
.
29.
Barrett
,
R. C.
,
Klaassen
,
E. H.
,
Albrecht
,
T. R.
,
Jaquette
,
G. A.
, and
Eaton
,
J. H.
, 1998, “
Timing-Based Track-Following Servo for Linear Tape Systems
,”
IEEE Trans. Magn.
0018-9464,
34
, pp.
1872
1877
.
30.
Bain
,
J. A.
,
Messner
,
W. C.
,
Steele
,
J. H.
, II
,
Schwarz
,
T. A.
,
O’Kane
,
W. J.
, and
Connoly
,
M. P.
, 1999, “
Limitations to Track Following Imposed by Position Error Signal SNR Using a Multi-Tapped Magnetoresistive Servo Head
,”
IEEE Trans. Magn.
0018-9464,
35
, pp.
740
745
.
31.
Middleton
,
R. H.
, 1991, “
Trade-Offs in Linear Control System Design
,”
Automatica
0005-1098,
27
, pp.
281
292
.
You do not currently have access to this content.