This paper is concerned with the problem of sliding mode control (SMC) for a class of neutral delay systems with unknown nonlinear uncertainties that may not satisfy the norm-bounded condition. A SMC scheme based on neural-network approximation is proposed for the uncertain neutral delay system. By means of linear matrix inequality (LMI) approach, a sufficient condition is given such that the resultant closed-loop system is guaranteed to be stable, and the states asymptotically converge to zero. When the LMI is feasible, the designs of both the sliding surface and the sliding mode control law can be easily obtained via convex optimization. It is shown that the state trajectories are driven toward the specified sliding surface that depends on the current states as well as the delayed states. Finally, a simulation result is given to illustrate the effectiveness of the proposed method.

1.
Hale
,
J. K.
, 1977,
Theory of Functional Differential Equations
,
Springer-Verlag
,
New York
.
2.
Logemann
,
H.
, and
Townley
,
S.
, 1996, “
The Effect of Small Delays in the Feedback Loop on the Stability of Neutral Systems
,”
Syst. Control Lett.
0167-6911,
27
, pp.
267
274
.
3.
Xu
,
S.
,
Lam
,
J.
, and
Yang
,
C.
, 2001, “
H∞ and Positive-Real Control for Linear Neutral Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
46
, pp.
1321
1326
.
4.
Niculescu
,
S. I.
, 2001, “
On Delay-Dependent Stability Under Model Transformations of Some Neutral Linear Systems
,”
Int. J. Control
0020-7179,
74
, pp.
609
617
.
5.
Wang
,
Z.
,
Lam
,
J.
, and
Burnham
,
K. J.
, 2002, “
Stability Analysis and Observer Design for Neutral Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
478
483
.
6.
Wang
,
H.
,
Lam
,
J.
,
Xu
,
S.
, and
Huang
,
S.
, 2002, “
Robust H∞ Reliable Control for a Class of Uncertain Neutral Delay Systems
,”
Int. J. Syst. Sci.
0020-7721,
33
, pp.
611
622
.
7.
Wang
,
Q.
,
Lam
,
J.
,
Xu
,
S.
, and
Zhang
,
L.
, 2006, “
Delay-Dependent γ-Suboptimal Π∞ Model Reduction for Neutral Systems With Time-Varying Delays
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
, pp.
394
399
.
8.
Zhong
,
M.
,
Ding
,
S. X.
,
Wang
,
H.
, and
Lam
,
J.
, 2004, “
An Optimization Approach to Fault Detection Observer Design for Neutral Delay Systems
,”
Dyn. Contin. Discrete Impulsive Syst.: Ser. A - Math. Anal.
1201-3390,
11
,
701
720
.
9.
El-khazali
,
R.
, 1998, “
Variable Structure Robust Control of Uncertain Time-Delay Systems
,”
Automatica
0005-1098,
34
, pp.
327
332
.
10.
Luo
,
N.
,
De La Sen
,
M.
, and
Rodellar
,
J.
, 1997, “
Robust Stabilization of a Class of Uncertain Time Delay Systems in Sliding Mode
,”
Int. J. Robust Nonlinear Control
1049-8923,
7
, pp.
59
74
.
11.
Yan
,
J.-J.
, 2003, “
Sliding Mode Control Design for Uncertain Time-Delay Systems Subjected to a Class of Nonlinear Inputs
,”
Int. J. Robust Nonlinear Control
1049-8923,
13
, pp.
519
532
.
12.
Niu
,
Y.
,
Lam
,
J.
,
Wang
,
X.
, and
Ho
,
D. W. C.
, 2004, “
Observer-Based Sliding Mode Control for Nonlinear State-Delayed Systems
,”
Int. J. Syst. Sci.
0020-7721,
35
, pp.
139
150
.
13.
Niu
,
Y.
,
Lam
,
J.
, and
Wang
,
X.
, 2004, “
Sliding Mode Control for Uncertain Neutral Delay Systems
,”
IEE Proc.: Control Theory Appl.
1350-2379,
151
, pp.
38
44
.
14.
Funahashi
,
K.
, 1989, “
On the Approximate Realization of Continuous Mapping by Neural Networks
,”
Neural Networks
0893-6080,
2
, pp.
183
192
.
15.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
, 1989, “
Multilayer Feedforward Networks are Universal Approximators
,”
Neural Networks
0893-6080,
2
, pp.
359
366
.
16.
Efe
,
M. O.
,
Abadoglu
,
E.
, and
Kaynak
,
O.
, 1999, “
A Novel Analysis and Design of a Neural Network Assisted Nonlinear Controller for a Bioreactor
,”
Int. J. Robust Nonlinear Control
1049-8923,
9
, pp.
799
815
.
17.
Bhatti
,
A. I.
,
Spurgeon
,
S. K.
, and
Lu
,
X. Y.
, 1999, “
A Nonlinear Sliding Mode Control Design Approach Based on Neural Network Modelling
,”
Int. J. Robust Nonlinear Control
1049-8923,
9
, pp.
397
423
.
18.
Niu
,
Y.
,
Lam
,
J.
,
Wang
,
X.
, and
Ho
,
D. W. C.
, 2003, “
Sliding Mode Control for Nonlinear State-Delayed Systems Using Neural Network Approximation
,”
IEE Proc.: Control Theory Appl.
1350-2379,
150
, pp.
233
239
.
19.
Yesildirek
,
A.
, and
Lewis
,
F. L.
, 1995, “
Feedback Linearization Using Neural Networks
,”
Automatica
0005-1098,
31
, pp.
1659
1664
.
20.
Fu
,
L. C.
, 1996, “
Neural Network Approach to Variable Structure Based Adaptive Tracking of SISO Systems
,”
Proceedings of the VSS’96 IEEE Workshop on Variable Structure Systems
,
Tokyo, Japan
, June, pp.
148
153
.
21.
Slotine
,
J.-J. E.
, 1984, “
Sliding Controller Design for Nonlinear Systems
,”
Int. J. Control
0020-7179,
40
, pp.
421
434
.
22.
Bartolini
,
B.
, 1989, “
Chattering Phenomena in Discontinuous Control Systems
,”
Int. J. Syst. Sci.
,
20
, pp.
2471
2481
. 0020-7721
23.
Burton
,
J. A.
, and
Zinober
,
A. S. I.
, 1986, “
Continuous Approximation of Variable Structure Control
,”
Int. J. Syst. Sci.
,
17
, pp.
875
885
. 0020-7721
You do not currently have access to this content.