Active magnetic bearings (AMBs) have been proposed by many researchers and engineers as an alternative to replace traditional contact bearings in rotor and driveshaft systems. Such active, noncontact bearings do not have frictional wear and can be used to suppress vibration in sub- and supercritical rotor-dynamic applications. One important issue that has not yet been addressed by previous AMB-driveline control studies is the effect of driveline misalignment. Previous research has shown that misalignment causes periodic parametric and forcing actions, which greatly impact both driveline stability and vibration levels. Therefore, in order to ensure closed-loop stability and acceptable performance of any AMB controlled driveline subjected to misalignment, these effects must be accounted for in the control system design. In this paper, a hybrid proportional derivative (PD) feedback/multiharmonic adaptive vibration control (MHAVC) feedforward law is developed for an AMB/U-joint-driveline system, which is subjected to parallel-offset misalignments, imbalance, and load-torque operating conditions. Conceptually, the PD feedback ensures closed-loop stability while the MHAVC feedforward suppresses steady-state vibration. It is found that there is a range of P and D feedback gains that ensures both MHAVC convergence and closed-loop stability robustness with respect to shaft internal damping induced whirl and misalignment effects. Finally, it is analytically and experimentally demonstrated that the hybrid PD-MHAVC law effectively adapts to and suppresses multiharmonic vibration induced by imbalance, misalignment, and load-torque effects at multiple operating speeds without explicit knowledge of the disturbance conditions.

1.
Allaire
,
P. E.
,
Humphris
,
R. R.
, and
Barrett
,
L. E.
, 1986, “
Critical Speeds and Unbalance Response of a Flexible Rotor in Magnetic Bearings
,”
Proceedings of the First European Turbomachinery Symposium
,
London, UK
, Oct.
27
28
.
2.
Nonami
,
K.
, 1988, “
Vibration and Control of Flexible Rotor Supported by Magnetic Bearings
,”
Proceedings of the First International Symposium on Magnetic Bearings
,
Zurich
,
Switzerland
, Jun. 6–8, pp.
177
186
.
3.
Herzog
,
R.
,
Buhler
,
P.
,
Gahler
,
C.
, and
Larsonneur
,
R.
, 1996, “
Unbalance Compensation Using Generalized Notch Filters in the Multivariable Feedback of Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
4
(
5
), pp.
580
586
.
4.
Itou
,
M.
,
Matsushita
,
O.
,
Okubo
,
H.
, and
Fujiwara
,
H.
, 2000, “
Unbalance Vibration Control for High Order Bending Critical Speeds of Flexible Rotor Supported by Active Magnetic Bearings
,”
Proceedings of the Eighth International symposium on Transport Phenomena and Dynamics of Rotating Mach (ISROMAC-8)
,
Honolulu, HI
, Mar. 26–30, pp.
922
928
.
5.
Shin
,
K.
, and
Ni
,
J.
, 2001, “
Adaptive Control of Active Balancing Systems for Speed-Varying Rotors Using Feedforward Gain Adaptation Technique
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
(
3
), pp.
346
352
.
6.
Knospe
,
C. R.
,
Hope
,
R. W.
,
Fedigan
,
S. J.
, and
Williams
,
R. D.
, 1993, “
Adaptive On-Line Balancing Using Digital Control
,”
Proceedings MAG ’93, Magnetic Bearings, Magnetic Drives and Dry Gas Seals Conference and Exhibition
,
Alexandria, VA
, Jul. 29–30, pp.
156
164
.
7.
Knospe
,
C. R.
,
Hope
,
R. W.
,
Fedigan
,
S. J.
, and
Williams
,
R. D.
, 1995, “
Experiments in the Control of Unbalance Response Using Magnetic Bearings
,”
Mechatronics
0957-4158,
5
(
4
), pp.
385
400
.
8.
Knospe
,
C. R.
,
Hope
,
R. W.
,
Tamer
,
S. M.
, and
Fedigan
,
S. J.
, 1996, “
Robustness of Adaptive Unbalance Control of Rotors With Magnetic Bearings
,”
J. Vib. Control
1077-5463,
2
(
1
), pp.
33
52
.
9.
Knospe
,
C. R.
,
Tamer
,
S. M.
, and
Fedigan
,
S. J.
, 1997, “
Robustness of Adaptive Rotor Vibration Control to Structured Uncertainty
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
(
2
), pp.
243
250
.
10.
Keogh
,
P. S.
,
Cole
,
M. O. T.
,
Sahinkaya
,
M. N.
, and
Burrows
,
C. R.
, 2004, “
On the Control of Synchronous Vibration in Rotor/Magnetic Bearing Systems Involving Auxiliary Bearing Contact
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
126
(
2
), pp.
366
372
.
11.
Setiawan
,
J. D.
,
Mukherjee
,
R.
, and
Maslen
,
E. H.
, 2002, “
Synchronous Sensor Runout and Unbalance Compensation in Active Magnetic Bearings Using Bias Current Excitation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
(
1
), pp.
14
24
.
12.
Xiao
,
Y.
,
Zhu
,
K. Y.
,
Zhang
,
C.
,
Tseng
,
K. J.
, and
Ling
,
K. V.
, 2005, “
Stabilizing Synchronization Control of Rotor-Magnetic Bearing Systems
,”
J. Syst. Control Engin.
,
219
(
17
), pp.
499
510
.
13.
Shi
,
J.
,
Zmood
,
R.
, and
Qin
,
L.
, 2004, “
Synchronous Disturbance Attenuation in Magnetic Bearing Systems Using Adaptive Compensating Signals
,”
Control Eng. Pract.
0967-0661,
12
(
3
), pp.
283
290
.
14.
Tamisier
,
V.
,
Font
,
S.
,
Lacour
,
M.
,
Carrere
,
F.
, and
Dumur
,
D.
, 2001, “
Attenuation of Vibrations Due to Unbalance of an Active Magnetic Bearings Milling Electro-Spindle
,”
Manufacturing Technology
,
50
(
1
), pp.
255
258
.
15.
Tsao
,
J. G.
,
Sheu
,
L. T.
, and
Yang
,
L. F.
, 2000, “
Adaptive Synchronization Control of the Magnetically Suspended Rotor System
,”
Dyn. Control
0925-4668,
10
(
3
), pp.
239
253
.
16.
Xu
,
M.
, and
Marangoni
,
R. D.
, 1994, “
Vibration Analysis of a Motor-Flexible Coupling-Rotor System Subjected to Misalignment and Unbalance, Part I: Theoretical Model and Analysis
,”
J. Sound Vib.
0022-460X,
176
(
5
), pp.
663
679
.
17.
Mazzei
,
A. J.
, Jr.,
Argento
,
A.
, and
Scott
,
R. A.
, 1999, “
Dynamic Stability of a Rotating Shaft Driven Through a Universal Joint
,”
J. Sound Vib.
0022-460X,
222
(
1
), pp.
19
47
.
18.
DeSmidt
,
H. A.
,
Wang
,
K. W.
, and
Smith
,
E. C.
, 2002, “
Coupled Torsion-Lateral Stability of a Shaft-Disk System Driven Through A Universal Joint
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
69
(
3
), pp.
261
273
.
19.
DeSmidt
,
H. A.
,
Wang
,
K. W.
, and
Smith
,
E. C.
, 2004, “
Stability of Segmented Supercritical Driveline With Non-Constant Velocity Couplings Subjected to Misalignment and Torque
,”
J. Sound Vib.
0022-460X,
277
(
4–5
), pp.
895
918
.
20.
Zorzi
,
E. S.
, and
Nelson
,
H. D.
, 1977, “
Finite Element Simulation of Rotor-Bearing Systems With Internal Damping
,”
ASME Trans., J. Eng. Power
,
99
(
1
), pp.
71
76
.
21.
Zorzi
,
E. S.
, and
Nelson
,
H. D.
, 1980, “
The Dynamics of Rotor-Bearing Systems With Axial Torque—A Finite Element Approach
,”
ASME J. Mech. Des.
0161-8458,
102
(
1
), pp.
158
161
.
22.
Darlow
,
M. S.
,
Kraus
,
R. F.
, and
Hetherington
,
P. L.
, 1990, “
Demonstration of a Supercritical Composite Helicopter Power Transmission Shaft
,”
J. Am. Helicopter Soc.
0002-8711,
35
(
1
), pp.
23
28
.
23.
Wereley
,
N. M.
, and
Hall
,
S. R.
, 1990, “
Frequency Response of Linear Time Periodic Systems
,”
29th IEEE Conference on Decision and Control
,
Honolulu, HI
, Dec. 5–7, pp.
3650
3655
.
24.
Friedmann
,
P. P.
, 1986, “
Numerical Methods for Determining the Stability and Response of Periodic Systems With Applications to Helicopter Rotor Dynamics and Aeroelasticity
,”
Comput. Math. Appl.
0898-1221,
12
(
1
), pp.
131
148
.
25.
Inman
,
D. J.
, 1994,
Engineering Vibration
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
26.
Ljung
,
L.
, 1998,
System Identification: Theory for the User
,
Prentice-Hall
,
Cliffs, NJ
.
You do not currently have access to this content.