Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Material selection is a crucial step in conceptual design due to its significant impact on the functionality, aesthetics, manufacturability, and sustainability impact of the final product. This study investigates the use of large language models (LLMs) for material selection in the product design process and compares the performance of LLMs against expert choices for various design scenarios. By collecting a dataset of expert material preferences, the study provides a basis for evaluating how well LLMs can align with expert recommendations through prompt engineering and hyperparameter tuning. The divergence between LLM and expert recommendations is measured across different model configurations, prompt strategies, and temperature settings. This approach allows for a detailed analysis of factors influencing the LLMs' effectiveness in recommending materials. The results from this study highlight two failure modes: the low variance of recommendations across different design scenarios and the tendency toward overestimating material appropriateness. Parallel prompting is identified as a useful prompt-engineering method when using LLMs for material selection. The findings further suggest that, while LLMs can provide valuable assistance, their recommendations often vary significantly from those of human experts. This discrepancy underscores the need for further research into how LLMs can be better tailored to replicate expert decision-making in material selection. This work contributes to the growing body of knowledge on how LLMs can be integrated into the design process, offering insights into their current limitations and potential for future improvements.

References

1.
[l]
Ashby
,
M. F.
,
Bréchet
,
Y. J. M.
,
Cebon
,
D.
, and
Salvo
,
L.
,
2004
, “
Selection Strategies for Materials and Processes
,”
Mater. Des.
,
25
(
1
), pp.
51
67
.
2.
Giachetti
,
R.
,
1997
,
Manufacturing Process and Material Selection During Conceptual Design
,
NIST
,
Miami, FL
, pp.
772
777
.
3.
Rasheed
,
M.
,
2022
,
What is Material Selection in Mechanical Design?
.
4.
Callister
,
W. D.
,
Rethwisch
,
D. G.
,
Blicblau
,
A.
,
Bruggeman
,
K.
,
Cortie
,
M.
,
Long
,
J.
,
Hart
,
J.
,
Marceau
,
R.
, and
Mitchell
,
R.
,
2007
,
Materials Science and Engineering: an Introduction
, Vol.
7
,
John Wiley and Sons
,
Hoboken, NJ
.
5.
Chandrasekhar
,
A.
,
Sridhara
,
S.
, and
Suresh
,
K.
,
2022
, “
Integrating Material Selection With Design Optimization via Neural Networks
,”
Eng. Comput.
,
38
(
5
), pp.
4715
4730
.
6.
Aires
,
R. F. d. F.
, and
Ferreira
,
L.
,
2022
, “
A New Multi-Criteria Approach for Sustainable Material Selection Problem
,”
Sustainability
,
14
(
18
), p.
11191
.
7.
Ermolaeva
,
N. S.
,
Kaveline
,
K. G.
, and
Spoormaker
,
J. L.
,
2002
, “
Materials Selection Combined With Optimal Structural Design: Concept and Some Results
,”
Mater. Des.
,
23
(
5
), pp.
459
470
.
8.
Ma
,
K.
,
Grandi
,
D.
,
McComb
,
C.
, and
Goucher-Lambert
,
K.
,
2023
, “Conceptual Design Generation Using Large Language Models,” arXiv:2306.01779 [cs]. http://arxiv.org/abs/2306.01779, Accessed February 29, 2024.
9.
Zarandi
,
M. H. F.
,
Mansour
,
S.
,
Hosseinijou
,
S. A.
, and
Avazbeigi
,
M.
,
2011
, “
A Material Selection Methodology and Expert System for Sustainable Product Design
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9
), pp.
885
903
.
10.
Bi
,
L.
,
Zuo
,
Y.
,
Tao
,
F.
,
Liao
,
T. W.
, and
Liu
,
Z.
,
2017
, “
Energy-Aware Material Selection for Product With Multicomponent Under Cloud Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031007
.
11.
van Kesteren
,
I.
,
Jan Stappers
,
P.
, and
de Bruijn
,
S.
,
2007
, “
Materials in Products Selection: Tools for Including User-Interaction in Materials Selection
,”
Int. J. Des.
,
1
(
3
).
12.
US EPA, O.
,
2024
, “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2022.” https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2022, Accessed April 18, 2024.
13.
Kishita
,
Y.
,
Low
,
B. H.
,
Fukushige
,
S.
,
Umeda
,
Y.
,
Suzuki
,
A.
, and
Kawabe
,
T.
,
2010
, “
Checklist-Based Assessment Methodology for Sustainable Design
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091011
.
14.
Banu
,
M.
,
Behdad
,
S.
,
Cooper
,
D.
,
Haapala
,
K.
,
Hu
,
C.
,
Kim
,
H.
,
Layton
,
A.
,
Linke
,
B. S.
,
Zhang
,
J.
,
2024
, “
Joint Special Issue: Advances in Design and Manufacturing for Sustainability
,”
ASME J. Mech. Des.
,
146
(
2
), p.
020301
.
15.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J.-K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.
16.
Albiñana
,
J. C.
, and
Vila
,
C.
,
2012
, “
A Framework for Concurrent Material and Process Selection During Conceptual Product Design Stages
,”
Mater. Des.
,
41
(
1
), pp.
433
446
.
17.
Bhat
,
B. N.
,
2018
,
Aerospace Materials and Applications
,
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
.
18.
Ashby
,
M. F.
,
1989
, “
Materials Selection in Conceptual Design
,”
Mater. Sci. Technol.
,
5
(
6
), pp.
517
525
.
19.
Prabhu
,
R.
,
Leguarda
,
R. L.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2021
, “
Favoring Complexity: A Mixed Methods Exploration of Factors That Influence Concept Selection When Designing for Additive Manufacturing
,”
ASME J. Mech. Des.
,
143
(
10
), p.
102001
.
20.
Karandikar
,
H. M.
, and
Mistree
,
F.
,
1992
, “
An Approach for Concurrent and Integrated Material Selection and Dimensional Synthesis
,”
ASME J. Mech. Des.
,
114
(
4
), pp.
633
641
.
21.
Ashby
,
M. F.
,
2011
,
Materials Selection in Mechanical Design
, 4th ed.,
Butterworth-Heinemann
,
Burlington, MA
.
22.
Shiau
,
C.-S. N.
, and
Michalek
,
J. J.
,
2009
, “
Optimal Product Design Under Price Competition
,”
ASME J. Mech. Des.
,
131
(
7
), p.
071003
.
23.
Hazelrigg
,
G. A.
,
1997
, “
On Irrationality in Engineering Design
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
194
196
.
24.
Ullah
,
N.
,
Riaz
,
A. A.
, and
Shah
,
S. A.
,
2020
, “
Investigation on Material Selection for the Columns of Universal Testing Machine (UTM) Using Granta's Design CES Edupack
,”
Tech. J.
,
25
(
2
), pp.
52
60
.
25.
Gomes
,
C. P.
,
Selman
,
B.
, and
Gregoire
,
J. M.
,
2019
, “
Artificial Intelligence for Materials Discovery
,”
MRS Bull.
,
44
(
7
), pp.
538
544
.
26.
Merchant
,
A.
,
Batzner
,
S.
,
Schoenholz
,
S. S.
,
Aykol
,
M.
,
Cheon
,
G.
, and
Cubuk
,
E. D.
,
2023
, “
Scaling Deep Learning for Materials Discovery
,”
Nature
,
624
(
7990
), pp.
80
85
.
27.
Chen
,
C.
,
Nguyen
,
D. T.
,
Lee
,
S. J.
,
Baker
,
N. A.
,
Karakoti
,
A. S.
,
Lauw
,
L.
,
Owen
,
C.
, et al
,
2024
, “Accelerating Computational Materials Discovery With Artificial Intelligence and Cloud High-Performance Computing: From Large-Scale Screening to Experimental Validation,” arXiv:2401.04070.
28.
Zaki
,
M.
,
Jayadeva
,
Mausam
, and
Anoop Krishnan
,
N. M.
,
2024
, “
MaScQA: Investigating Materials Science Knowledge of Large Language Models
,”
Digit. Discovery
,
3
(
2
), pp.
313
327
.
29.
Miret
,
S.
, and
Krishnan
,
N.
,
2024
, “Are LLMs Ready for Real-World Materials Discovery?” arXiv:2402.05200.
30.
Singh
,
M.
,
2022
, “
Subjective Selection and the Evolution of Complex Culture
,”
Evol. Anthropol.
,
31
(
6
), pp.
266
280
.
31.
Leontiev
,
D. A.
,
Osin
,
E. N.
,
Fam
,
A. K.
, and
Ovchinnikova
,
E. Y.
,
2022
, “
How You Choose Is as Important as What You Choose: Subjective Quality of Choice Predicts Well-Being and Academic Performance
,”
Curr. Psychol.
,
41
(
9
), pp.
6439
6451
.
32.
Zadpoor
,
A. A.
,
Mirzaali
,
M. J.
,
Valdevit
,
L.
, and
Hopkins
,
J. B.
,
2023
, “
Design, Material, Function, and Fabrication of Metamaterials
,”
APL Mater.
,
11
(
2
), p.
020401
.
33.
Liu
,
R.
,
Ji
,
C.
,
Zhao
,
Z.
, and
Zhou
,
T.
,
2015
, “
Metamaterials: Reshape and Rethink
,”
Engineering
,
1
(
2
), pp.
179
184
.
34.
Govt. Polytechnic College
,
Singh
,
G.
,
Ni
,
R.
, and
Marwaha
,
A.
,
2015
, “
A Review of Metamaterials and Its Applications
,”
Int. J. Eng. Trends Technol.
,
19
(
6
), pp.
305
310
.
35.
Jelínek
,
F.
, and
Breedveld
,
P.
,
2015
, “
Design for Additive Manufacture of Fine Medical Instrumentation—DragonFlex Case Study
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111416
.
36.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
.
37.
Kombrink
,
S.
,
Mikolov
,
T.
,
Karafiát
,
M.
, and
Burget
,
L.
,
2011
, “
Recurrent Neural Network Based Language Modeling in Meeting Recognition
,”
Interspeech
,
11
(
1
), pp.
2877
2880
.
38.
Gao
,
J.
, and
Lin
,
C.-Y.
,
2004
, “
Introduction to the Special Issue on Statistical Language Modeling
,”
ACM Trans. Asian Lang. Inf. Proc.
,
3
(
2
), pp.
87
93
.
39.
Devlin
,
J.
,
Chang
,
M.-W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2019
, “BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding,” arXiv:1810.04805 [cs]. http://arxiv.org/abs/1810.04805. Accessed April 3, 2024.
40.
Kasneci
,
E.
,
Sessler
,
K.
,
Küchemann
,
S.
,
Bannert
,
M.
,
Dementieva
,
D.
,
Fischer
,
F.
,
Gasser
,
U.
, et al
,
2023
, “
ChatGPT for Good? On Opportunities and Challenges of Large Language Models for Education
,”
Learn. Individ. Differ.
,
103
(
1
), p.
102274
.
41.
Chen
,
M.
,
Tworek
,
J.
,
Jun
,
H.
,
Yuan
,
Q.
,
Pinto
,
H. P. d. O.
,
Kaplan
,
J.
,
Edwards
,
H.
, et al
,
2021
, “Evaluating Large Language Models Trained on Code,” arXiv:2107.03374 [cs]. http://arxiv.org/abs/2107.03374. Accessed April 3, 2024.
42.
Zhao
,
W. X.
,
Zhou
,
K.
,
Li
,
J.
,
Tang
,
T.
,
Wang
,
X.
,
Hou
,
Y.
,
Min
,
Y.
, et al
,
2023
, “A Survey of Large Language Models,” arXiv:2303.18223 [cs]. http://arxiv.org/abs/2303.18223. Accessed April 3, 2024.
43.
“GPT-3: Its Nature, Scope, Limits, and Consequences | Minds and Machines.” https://link.springer.com/article/10.1007/s11023-020-09548-1. Accessed April 3, 2024.
44.
OpenAI
,
Achiam
,
J.
,
Adler
,
S.
,
Agarwal
,
S.
,
Ahmad
,
L.
,
Akkaya
,
I.
,
Aleman
,
F. L.
, et al
,
2024
, “GPT-4 Technical Report,” arXiv:2303.08774 [cs]. http://arxiv.org/abs/2303.08774. Accessed April 3, 2024.
45.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Adv. Neural Inf. Process. Syst.
,
30
(
1
).
46.
Brown
,
T. B.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J.
,
Dhariwal
,
P.
,
Neelakantan
,
A.
, et al
,
2020
, “Language Models Are Few-Shot Learners,” arXiv:2005.14165 [cs]., http://arxiv.org/abs/2005.14165. Accessed March 7, 2024.
47.
White
,
J.
,
Fu
,
Q.
,
Hays
,
S.
,
Sandborn
,
M.
,
Olea
,
C.
,
Gilbert
,
H.
,
Elnashar
,
A.
,
Spencer-Smith
,
J.
, and
Schmidt
,
D. C.
,
2023
, “A Prompt Pattern Catalog to Enhance Prompt Engineering With ChatGPT,” arXiv:2302.11382 [cs]. http://arxiv.org/abs/2302.11382. Accessed April 3, 2024.
48.
Zhou
,
Y.
,
Muresanu
,
A. I.
,
Han
,
Z.
,
Paster
,
K.
,
Pitis
,
S.
,
Chan
,
H.
, and
Ba
,
J.
,
2023
, “Large Language Models Are Human-Level Prompt Engineers,” arXiv:2211.01910 [cs]. http://arxiv.org/abs/2211.01910. Accessed April 3, 2024.
49.
Clavié
,
B.
,
Ciceu
,
A.
,
Naylor
,
F.
,
Soulié
,
G.
, and
Brightwell
,
T.
,
2023
, “Large Language Models in the Workplace: A Case Study on Prompt Engineering for Job Type Classification,” arXiv:2303.07142 [cs]. http://arxiv.org/abs/2303.07142. Accessed April 3, 2024.
50.
Jansson
,
M.
,
Hrastinski
,
S.
,
Stenbom
,
S.
, and
Enoksson
,
F.
,
2021
, “
Online Question and Answer Sessions: How Students Support Their Own and Other Students' Processes of Inquiry in a Text-Based Learning Environment
,”
Internet Higher Educ.
,
51
, p.
100817
.
51.
Chang
,
Y.
,
Wang
,
X.
,
Wang
,
J.
,
Wu
,
Y.
,
Zhu
,
K.
,
Chen
,
H.
,
Yang
,
L.
, et al
,
2023
, “A Survey on Evaluation of Large Language Models,” arXiv:2307.03109.
52.
Deng
,
J.
,
Dong
,
W.
,
Socher
,
R.
,
Li
,
L.-J.
,
Li
,
K.
, and
Fei-Fei
,
L.
,
2009
, “
ImageNet: A Large-Scale Hierarchical Image Database
,”
2009 IEEE Conference on Computer Vision and Pattern Recognition
,
Miami, FL
,
Aug. 18
, pp.
248
255
.
53.
Lin
,
T.-Y.
,
Maire
,
M.
,
Belongie
,
S.
,
Bourdev
,
L.
,
Girshick
,
R.
,
Hays
,
J.
,
Perona
,
P.
,
Ramanan
,
D.
,
Zitnick
,
C. L.
, and
Dollár
,
P.
,
2015
, “Microsoft COCO: Common Objects in Context,” arXiv:1405.0312 [cs]. http://arxiv.org/abs/1405.0312. Accessed April 3, 2024.
54.
Wang
,
A.
,
Singh
,
A.
,
Michael
,
J.
,
Hill
,
F.
,
Levy
,
O.
, and
Bowman
,
S. R.
,
2019
, “GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding,” 1804.07461.
55.
Wang
,
A.
,
Pruksachatkun
,
Y.
,
Nangia
,
N.
,
Singh
,
A.
,
Michael
,
J.
,
Hill
,
F.
,
Levy
,
O.
, and
Bowman
,
S. R.
,
2020
, “SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems,” arXiv:1905.00537 [cs]. http://arxiv.org/abs/1905.00537. Accessed April 3, 2024.
56.
Lin
,
Y.-T.
, and
Chen
,
Y.-N.
,
2023
, “LLM-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations With Large Language Models,” arXiv:2305.13711 [cs]. http://arxiv.org/abs/2305.13711. Accessed April 3, 2024.
57.
Wang
,
Y.
,
Yu
,
Z.
,
Zeng
,
Z.
,
Yang
,
L.
,
Wang
,
C.
,
Chen
,
H.
,
Jiang
,
C.
, et al
,
2023
, “PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tuning Optimization,” arXiv:2306.05087 [cs]. http://arxiv.org/abs/2306.05087. Accessed April 3, 2024.
58.
Jain
,
N.
,
Saifullah
,
K.
,
Wen
,
Y.
,
Kirchenbauer
,
J.
,
Shu
,
M.
,
Saha
,
A.
,
Goldblum
,
M.
,
Geiping
,
J.
, and
Goldstein
,
T.
,
2023
, “Bring Your Own Data! SelfSupervised Evaluation for Large Language Models,” arXiv:2306.13651 [cs]. http://arxiv.org/abs/2306.13651. Accessed April 3, 2024.
59.
Hendrycks
,
D.
,
Burns
,
C.
,
Basart
,
S.
,
Zou
,
A.
,
Mazeika
,
M.
,
Song
,
D.
, and
Steinhardt
,
J.
,
2021
, “Measuring Massive Multitask Language Understanding,” arXiv:2009.03300 [cs]. http://arxiv.org/abs/2009.03300. Accessed April 3, 2024.
60.
Liang
,
P.
,
Bommasani
,
R.
,
Lee
,
T.
,
Tsipras
,
D.
,
Soylu
,
D.
,
Yasunaga
,
M.
,
Zhang
,
Y.
, et al
,
2023
, “Holistic Evaluation of Language Models,” arXiv:2211.09110 [cs]. http://arxiv.org/abs/2211.09110. Accessed April 3, 2024.
61.
Huang
,
Y.
,
Bai
,
Y.
,
Zhu
,
Z.
,
Zhang
,
J.
,
Zhang
,
J.
,
Su
,
T.
,
Liu
,
J.
, et al
,
2023
, “C-Eval: A MultiLevel Multi-Discipline Chinese Evaluation Suite for Foundation Models,” arXiv:2305.08322 [cs]., http://arxiv.org/abs/2305.08322. Accessed April 3, 2024.
62.
Zhong
,
W.
,
Cui
,
R.
,
Guo
,
Y.
,
Liang
,
Y.
,
Lu
,
S.
,
Wang
,
Y.
,
Saied
,
A.
,
Chen
,
W.
, and
Duan
,
N.
,
2023
, “AGIEval: A Human-Centric Benchmark for Evaluating JCISE-24-1207 Foundation Models,” arXiv:2304.06364 [cs]., http://arxiv.org/abs/2304.06364. Accessed April 3, 2024.
63.
Dubois
,
Y.
,
Li
,
X.
,
Taori
,
R.
,
Zhang
,
T.
,
Gulrajani
,
I.
,
Ba
,
J.
,
Guestrin
,
C.
,
Liang
,
P.
, and
Hashimoto
,
T. B.
,
2024
, “AlpacaFarm: A Simulation Framework for Methods That Learn From Human Feedback,” arXiv:2305.14387 [cs]., http://arxiv.org/abs/2305.14387. Accessed April 3, 2024.
64.
Chiang
,
W.-L.
,
Zheng
,
L.
,
Sheng
,
Y.
,
Angelopoulos
,
A. N.
,
Li
,
T.
,
Li
,
D.
,
Zhang
,
H.
, et al
,
2024
, “Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference,” arXiv:2403.04132 [cs]. http://arxiv.org/abs/2403.04132. Accessed April 3, 2024.
65.
Novikova
,
J.
,
Dušek
,
O.
,
Curry
,
A. C.
, and
Rieser
,
V.
,
2017
, “
Why We Need New Evaluation Metrics for NLG
,”
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
,
Copenhagen, Denmark
,
September
.
66.
Bubeck
,
S.
,
Chandrasekaran
,
V.
,
Eldan
,
R.
,
Gehrke
,
J.
,
Horvitz
,
E.
,
Kamar
,
E.
,
Lee
,
P.
, et al
,
2023
, “Sparks of Artificial General Intelligence: Early Experiments With GPT-4,” arXiv:2303.12712 [cs]. http://arxiv.org/abs/2303.12712. Accessed April 3, 2024.
67.
Bang
,
Y.
,
Cahyawijaya
,
S.
,
Lee
,
N.
,
Dai
,
W.
,
Su
,
D.
,
Wilie
,
B.
,
Lovenia
,
H.
, et al
,
2023
, “A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity,” arXiv:2302.04023 [cs]. http://arxiv.org/abs/2302.04023. Accessed April 3, 2024.
68.
Ziems
,
C.
,
Held
,
W.
,
Shaikh
,
O.
,
Chen
,
J.
,
Zhang
,
Z.
, and
Yang
,
D.
,
2024
, “Can Large Language Models Transform Computational Social Science?” arXiv:2305.03514 [cs]. http://arxiv.org/abs/2305.03514. Accessed April 3, 2024.
69.
Peng
,
K.
,
Nisbett
,
R. E.
, and
Wong
,
N. Y. C.
,
1997
, “
Validity Problems Comparing Values Across Cultures and Possible Solutions
Psychol. Meth.
,
2
(
4
), pp.
329
344
.
70.
Tjuatja
,
L.
,
Chen
,
V.
,
Wu
,
S. T.
,
Talwalkar
,
A.
, and
Neubig
,
G.
,
2024
, “Do LLMs Exhibit Human-Like Response Biases? A Case Study in Survey Design,” arXiv:2311.04076 [cs]., http://arxiv.org/abs/2311.04076. Accessed April 10, 2024.
71.
Hopkins
,
A. K.
,
Renda
,
A.
, and
Carbin
,
M.
,
2023
, “Can LLMs Generate Random Numbers? Evaluating LLM Sampling in Controlled Domains.” https://openreview.net/forum?id=Vhh1K9LjVI. Accessed April 10, 2024.
72.
Keiser
,
J. R.
,
He
,
X.
,
Sulejmanovic
,
D.
,
Qu
,
J. N.
,
Robb
,
K. R.
, and
Oldinski
,
K.
,
2023
, “
Material Selection and Corrosion Studies of Candidate Bearing Materials for Use in Molten Chloride Salts
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021001
.
73.
Odum
,
K.
,
Soshi
,
M.
, and
Yamazaki
,
K.
,
2022
, “
Numerical Study of Material Selection for Optimal Directed Energy Deposition Single Nozzle Powder Efficiency
,”
ASME J. Manuf. Sci. Eng.
,
144
(
12
), p.
121006
.
74.
Sirisalee
,
P.
,
Parks
,
G. T.
,
Ashby
,
M. F.
, and
Clarkson
,
P. J.
,
2004
, “
MultiMaterial Selection: Material Selection for Sandwich Beams
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Oct. 2
, Vol. 46962, pp.
31
40
.
75.
Somkuwar
,
A.
,
Khaira
,
H.
, and
Somkuwar
,
V.
,
2010
, “
Materials Selection for Product Design Using Artificial Neural Network Technique
,”
J. Eng. Sci. Manage. Educ.
,
1
, pp.
51
54
.
76.
Eddy
,
Douglas
,
Krishnamurty
,
Sundar
,
Grosse
,
Ian
,
Wileden
,
Jack
, and
Lewis
,
Kemper
,
2014
, “
A Robust Surrogate Modeling Approach for Material Selection in Sustainable Design of Products
,”
Vol. Volume 1A: 34th Computers and Information in Engineering Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
August 2014
.
77.
Dehghan-Manshadi
,
B.
,
Mahmudi
,
H.
,
Abedian
,
A.
, and
Mahmudi
,
R.
,
2007
, “
A Novel Method for Materials Selection in Mechanical Design: Combination of Non-Linear Normalization and a Modified Digital Logic Method
,”
Mater. Des.
,
28
(
1
), pp.
8
15
.
78.
Mamoon
,
A.
,
Alhaji
,
A. U.
, and
Abdullahi
,
I.
,
2021
, “
Application of Neural Network for Material Selection: A Review
,”
Int. J. Mater. Sci. Eng.
,
7
(
2
), pp.
1
6
.
79.
Zhou
,
C.-C.
,
Yin
,
G.-F.
, and
Hu
,
X.-B.
,
2009
, “
Multi-Objective Optimization of Material Selection for Sustainable Products: Artificial Neural Networks and Genetic Algorithm Approach
,”
Mater. Des.
,
30
(
4
), pp.
1209
1215
.
80.
Bian
,
S.
,
Grandi
,
D.
,
Hassani
,
K.
,
Sadler
,
E.
,
Borijin
,
B.
,
Fernandes
,
A.
,
Wang
,
A.
, et al.
,
2022
, “
Material Prediction for Design Automation Using Graph Representation Learning
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
August 2022
.
81.
Bian
,
S.
,
Grandi
,
D.
,
Liu
,
T.
,
Jayaraman
,
P. K.
,
Willis
,
K.
,
Sadler
,
E.
,
Borijin
,
B.
, et al
,
2024
, “
HG-CAD: Hierarchical Graph Learning for Material Prediction and Recommendation in Computer-Aided Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
1
), p.
011007
.
82.
Brown
,
T.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J. D.
,
Dhariwal
,
P.
,
Neelakantan
,
A.
, et al.
,
2020
, “
Language Models Are Few-Shot Learners
,”
Adv. Neural Inf. Proc. Syst.
,
33
(
159
), pp.
1877
1901
.
83.
Wei
,
J.
,
Tay
,
Y.
,
Bommasani
,
R.
,
Raffel
,
C.
,
Zoph
,
B.
,
Borgeaud
,
S.
,
Yogatama
,
D.
, et al
,
2022
, “Emergent Abilities of Large Language Models,” arXiv preprint arXiv:2206.07682.
84.
Touvron
,
H.
,
Lavril
,
T.
,
Izacard
,
G.
,
Martinet
,
X.
,
Lachaux
,
M.-A.
,
Lacroix
,
T.
,
Rozière
,
B.
, et al
,
2023
, “Llama: Open and Efficient Foundation Language Models,” arXiv:2302.13971.
85.
Driess
,
D.
,
Xia
,
F.
,
Sajjadi
,
M. S.
,
Lynch
,
C.
,
Chowdhery
,
A.
,
Ichter
,
B.
,
Wahid
,
A.
, et al
,
2023
, “Palm-e: An Embodied Multimodal Language Model,” arXiv preprint arXiv:2303.03378.
86.
Zhu
,
Q.
, and
Luo
,
J.
,
2023
, “
Generative Transformers for Design Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041003
.
87.
Jiang
,
S.
,
Sarica
,
S.
,
Song
,
B.
,
Hu
,
J.
, and
Luo
,
J.
,
2022
, “
Patent Data for Engineering Design: A Critical Review and Future Directions
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
6
), pp.
060902
.
88.
Picard
,
C.
,
Edwards
,
K. M.
,
Doris
,
A. C.
,
Man
,
B.
,
Giannone
,
G.
,
Alam
,
M. F.
, and
Ahmed
,
F.
,
2023
, “From Concept to Manufacturing: Evaluating VisionLanguage Models for Engineering Design,” arXiv:2311.12668.
89.
Picard
,
C.
, and
Ahmed
,
F.
,
2024
, “
Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data
,”
ASME J. Mech. Des.
,
146
(
9
), p.
091705
.
90.
Meltzer
,
P.
,
Lambourne
,
J. G.
, and
Grandi
,
D.
,
2024
, “
What's in a Name? Evaluating Assembly-Part Semantic Knowledge in Language Models Through User-Provided Names in Computer Aided Design Files
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
1
), p.
011002
.
91.
Song
,
B.
,
Zhou
,
R.
, and
Ahmed
,
F.
,
2024
, “
Multi-Modal Machine Learning in Engineering Design: A Review and Future Directions
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
1
), p.
010801
.
92.
Saka
,
A.
,
Taiwo
,
R.
,
Saka
,
N.
,
Salami
,
B.
,
Ajayi
,
S.
,
Akande
,
K.
, and
Kazemi
,
H.
,
2023
, “GPT Models in Construction Industry: Opportunities, Limitations, and a Use Case Validation,” 2305.18997.
93.
Makatura
,
L.
,
Foshey
,
M.
,
Wang
,
B.
,
HähnLein
,
F.
,
Ma
,
P.
,
Deng
,
B.
,
Tjandrasuwita
,
M.
, et al
,
2023
, “How Can Large Language Models Help Humans in Design and Manufacturing?” 2307.14377.
94.
Buehler
,
M. J.
,
2023
, “MeLM, a Generative Pretrained Language Modeling Framework That Solves Forward and Inverse Mechanics Problems,” 2306.17525.
95.
OpenAI
,
2023
, “GPT-4V(ision) System Card,” https://api.semanticscholar.org/CorpusID:263218031.
96.
Shaham
,
U.
,
Ivgi
,
M.
,
Efrat
,
A.
,
Berant
,
J.
, and
Levy
,
O.
,
2023
, “ZeroSCROLLS: A Zero-Shot Benchmark for Long Text Understanding,” arXiv:2305.14196.
97.
Chiang
,
W.-L.
,
Zheng
,
L.
,
Sheng
,
Y.
,
Angelopoulos
,
A. N.
,
Li
,
T.
,
Li
,
D.
,
Zhang
,
H.
, et al
,
2024
, “Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference,” 2403. 04132.
98.
Jiang
,
A. Q.
,
Sablayrolles
,
A.
,
Roux
,
A.
,
Mensch
,
A.
,
Savary
,
B.
,
Bamford
,
C.
,
Chaplot
,
D. S.
, et al
,
2024
, “Mixtral of Experts,” arXiv:2401.04088.
99.
Buehler
,
M. J.
,
2024
, “
MechGPT, a Language-Based Strategy for Mechanics and Materials Modeling That Connects Knowledge Across Scales, Disciplines, and Modalities
,”
ASME Appl. Mech. Rev.
,
76
(
2
), p.
021001
.
100.
Lee
,
A. N.
,
Hunter
,
C. J.
,
Ruiz
,
N.
,
Goodson
,
B.
,
Lian
,
W.
,
Wang
,
G.
,
Pentland
,
E.
,
Cook
,
A.
, and
Vong
,
C.
,
2023
,
OpenOrcaPlatypus: Llama2-13B Model Instruct-Tuned on Filtered OpenOrcaV1 GPT-4 Dataset and Merged with divergent STEM and Logic Dataset Model
. https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B
101.
Kojima
,
T.
,
Gu
,
S. S.
,
Reid
,
M.
,
Matsuo
,
Y.
, and
Iwasawa
,
Y.
,
2023
, “Large Language Models Are Zero-Shot Reasoners,” 2205.11916.
102.
Wei
,
J.
,
Wang
,
X.
,
Schuurmans
,
D.
,
Bosma
,
M.
,
Ichter
,
B.
,
Xia
,
F.
,
Chi
,
E. D.
,
Le
,
Q. V.
, and
Zhou
,
D.
,
2022
, “
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
,”
Adv. Neural Inf. Process. Syst.
,
35
(
1008
), pp.
24824
24837
.
103.
Yao
,
S.
,
Yu
,
D.
,
Zhao
,
J.
,
Shafran
,
I.
,
Griffiths
,
T.
,
Cao
,
Y.
, and
Narasimhan
,
K.
,
2024
, “
Tree of Thoughts: Deliberate Problem Solving With Large Language Models
,”
Adv. Neural Inf. Process. Syst.
,
36
(
1
).
104.
Shinn
,
N.
,
Labash
,
B.
, and
Gopinath
,
A.
,
2023
, “Reflexion: An Autonomous Agent With Dynamic Memory and Self-Reflection,” arXiv:2303.11366.
105.
White
,
J.
,
Fu
,
Q.
,
Hays
,
S.
,
Sandborn
,
M.
,
Olea
,
C.
,
Gilbert
,
H.
,
Elnashar
,
A.
,
Spencer-Smith
,
J.
, and
Schmidt
,
D. C.
,
2023
, “A Prompt Pattern Catalog to Enhance Prompt Engineering With Chatgpt,” arXiv:2302.11382.
106.
Renze
,
M.
, and
Guven
,
E.
,
2024
, “The Effect of Sampling Temperature on Problem Solving in Large Language Models,” arXiv:2402.05201.
107.
Ma
,
K.
,
Grandi
,
D.
,
McComb
,
C.
, and
Goucher-Lambert
,
K.
,
2023
, “
Conceptual Design Generation Using Large Language Models
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–24
.
You do not currently have access to this content.