Abstract

Developing a more automated industrial digital thread is vital to realize the smart manufacturing and industry 4.0 vision. The digital thread allows for efficient sharing across product lifecycle stages. Current techniques are not robust in relating downstream data, such as manufacturing and inspection information, back to design for better decision making. We previously presented a methodology that aligns numerical control (NC) code, a standard for representing machine tool instructions, to controller data represented in MTConnect, a standard that provides a vocabulary for generalizing execution logs from different machine tools and devices. This paper extends our previous work by automating the tool identification using a k-means clustering algorithm to refine the alignment of the data. In doing so, we compare different distance techniques to analyze the spatial-temporal registration of the two datasets, i.e., the NC code and MTConnect data. Then, we assess the efficiency of our method through an error measurement technique that expresses the quality of the alignment. Finally, we apply our methodology to a case study that includes verified process plans and real execution data, derived from the smart manufacturing systems test bd hosted at the National Institute of Standards and Technology. Our analysis shows that dynamic time warping achieves the best point registration with the least errors compared with other alignment techniques.

References

1.
Gualtieri
,
M.
,
2016
, Hadoop Is Data’s Darling for a Reason, Accessed April 8, 2018.
2.
Monnier
,
L. V.
,
Bernstein
,
W. Z.
, and
Foufou
,
S.
,
2021
, “
Classifying Data Mapping Techniques to Facilitate the Digital Thread and Smart Manufacturing
,”
IFIP International Conference on Product Lifecycle Management
,
Curitiba, Brazil
,
July 11–14
, Springer, pp.
272
283
.
3.
Stark
,
J.
,
2015
, “Product Lifecycle Management,” Product Lifecycle Management (Volume 1), Springer.
4.
Helu
,
M.
,
Joseph
,
A.
, and
Hedberg Jr
,
T.
,
2018
, “
A Standards-Based Approach for Linking As-Planned to As-Fabricated Product Data
,”
CIRP Annals
,
67
(
1
), pp.
487
490
.
5.
Hedberg
,
T.
,
Feeney
,
A. B.
,
Helu
,
M.
, and
Camelio
,
J. A.
,
2017
, “
Toward a Lifecycle Information Framework and Technology in Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021010
.
6.
Hedberg Jr
,
T. D.
,
Hartman
,
N. W.
,
Rosche
,
P.
, and
Fischer
,
K.
,
2017
, “
Identified Research Directions for Using Manufacturing Knowledge Earlier in the Product Life Cycle
,”
Int. J. Prod. Res.
,
55
(
3
), pp.
819
827
.
7.
Helu
,
M.
, and
Hedberg Jr
,
T.
,
2015
, “
Enabling Smart Manufacturing Research and Development Using a Product Lifecycle Test Bed
,”
Proc. Manuf.
,
1
(
1
), pp.
86
97
.
8.
Monnier
,
L. V.
,
Shao
,
G.
, and
Foufou
,
S.
,
2022
, “
A Methodology for Digital Twins of Product Lifecycle Supported by Digital Thread
,”
ASME International Mechanical Engineering Congress and Exposition
,
Columbus, OH
,
Oct. 30–Nov. 2
.
9.
MTConnect Institute
,
2014
.
MTConnect Standard
. Accessed March 31, 2017.
10.
Barbau
,
R.
,
Krima
,
S.
,
Rachuri
,
S.
,
Narayanan
,
A.
,
Fiorentini
,
X.
,
Foufou
,
S.
, and
Sriram
,
R. D.
,
2012
, “
OntoSTEP: Enriching Product Model Data Using Ontologies
,”
Comput. Aided Des.
,
44
(
6
), pp.
575
590
.
11.
Kwon
,
S.
,
Monnier
,
L. V.
,
Barbau
,
R.
, and
Bernstein
,
W. Z.
,
2020
, “
Enriching Standards-Based Digital Thread by Fusing As-Designed and As-Inspected Data Using Knowledge Graphs
,”
Adv. Eng. Inf.
,
46
(
1
), p.
101102
.
12.
Kwon
,
S.
,
Monnier
,
L. V.
,
Barbau
,
R.
, and
Bernstein
,
W. Z.
,
2022
, “
A New Implementation of OntoSTEP: Flexible Generation of Ontology and Knowledge Graphs of Express-Driven Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
024502
.
13.
ISO 10303-238
,
2007
, Industrial Automation Systems and Integration – Product Data Presentation and Exchange – Part 238: Application Protocol: Application Interpreted Model for Computerized Numerical Controllers, International Organization for Standardization.
14.
Bernstein
,
W. Z.
,
Hedberg Jr
,
T. D.
,
Helu
,
M.
, and
Feeney
,
A. B.
,
2018
, “
Contextualising Manufacturing Data for Lifecycle Decision-Making
,”
Int. J. Prod. Lifecycle Manage
,
10
(
4
), pp.
326
347
.
15.
West
,
T. D.
, and
Blackburn
,
M.
,
2017
, “
Is Digital Thread/digital Twin Affordable? A Systemic Assessment of the Cost of DoD’s Latest Manhattan Project
,”
Proc. Comput. Sci
,
114
(
1
), pp.
47
56
.
16.
Helu
,
M.
,
Sprock
,
T.
,
Hartenstine
,
D.
,
Venketesh
,
R.
, and
Sobel
,
W.
,
2020
, “
Scalable Data Pipeline Architecture to Support the Industrial Internet of Things
,”
CIRP Ann
,
69
(
1
), pp.
385
388
.
17.
ISO 10303-42
,
2003
,
Industrial Automation Systems and Integration – Product Data Presentation and Exchange – Part 42: Integrated Generic Resource: Geometric and Topological Representation
,
International Organization for Standardization
,
Geneva, Switzerland
.
18.
Hedberg
,
T.
,
Lubell
,
J.
,
Fischer
,
L.
,
Maggiano
,
L.
, and
Barnard Feeney
,
A.
,
2016
, “
Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
2
), p.
021001
.
19.
Electronic Industries Association
,
1980
,
Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines
,
Electronic Industries Association
.
20.
Hardwick
,
M.
, and
Loffredo
,
D.
,
2006
, “
Lessons Learned Implementing STEP-NC AP-238
,”
Int. J. Comput. Int. Manuf
,
19
(
6
), pp.
523
532
.
21.
Dimensional Metrology Standards Consortium
,
2014
, Part 1: Overview and Fundamental Principles in Quality Information Framework (QIF) - An Integrated Model for Manufacturing Quality Information, Accessed March 31, 2017.
22.
The Association for Manufacturing Technology
,
2018
, OPC Unified Architecture for MTConnect Companion Specification, Release Candidate 2.0.5. AMT.
23.
Fischer
,
K.
,
Rosche
,
P.
,
Trainer
,
A.
,
Feeney
,
A. B.
, and
Hedberg
,
T. D.
,
2015
, “Investigating the Impact of Standards-Based Interoperability for Design to Manufacturing and Quality in the Supply Chain,” Technical Report, National Institute of Standards and Technology.
24.
Danjou
,
C.
,
Le Duigou
,
J.
, and
Eynard
,
B.
,
2014
, “
OntoSTEP-NC for Information Feedbacks From CNC to CAD/CAM Systems
,”
IFIP International Conference on Advances in Production Management Systems
,
Ajaccio, France
,
Sept. 20–24
, Springer..
25.
Feng
,
S. C.
,
Bernstein
,
W. Z.
,
Hedberg Jr
,
T.
, and
Feeney
,
A. B.
,
2017
, “
Towards Knowledge Management for Smart Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng
, 17(3), p. 031016.
26.
Monnier
,
L.
,
Bemstein
,
W. Z.
, and
Foufou
,
S.
,
2019
, “
A Proposed Mapping Method for Aligning Machine Execution Data to Numerical Control Code
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC, Canada
,
Aug. 22–26
.
27.
Fotheringham
,
A. S.
,
Brunsdon
,
C.
, and
Charlton
,
M.
,
2000
,
Quantitative Geography: Perspectives on Spatial Data Analysis
,
SAGE Publications Inc
,
Thousand Oaks, CA
.
28.
Lin
,
R.
,
Agrawal
,
K.-I.
, and
Shim
,
H. S. S. K.
,
1995
, “
Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases
,”
21st International Conference on Very Large Data Bases
,
Zurich, Switzerland
,
Sept. 11–15
.
29.
Keogh
,
E. J.
, and
Pazzani
,
M. J.
,
1998
, “
An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback
.”
30.
Keogh
,
E.
,
Chakrabarti
,
K.
,
Pazzani
,
M.
, and
Mehrotra
,
S.
,
2001
, “
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases
,”
Knowl. Inform. Syst
,
3
(
1
), pp.
263
286
.
31.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “Method for Registration of 3D Shapes,” Sensor Fusion IV: Control Paradigms and Data Structures, International Society for Optics and Photonics.
32.
Béarée
,
R.
,
Dieulot
,
J.-Y.
, and
Rabaté
,
P.
,
2011
, “
An Innovative Subdivision-ICP Registration Method for Tool-Path Correction Applied to Deformed Aircraft Parts Machining
,”
Inter. J. Adv. Manuf. Technol.
,
53
(
1
), pp.
463
471
.
33.
Chen
,
Y.
, and
Medioni
,
G.
,
1992
, “
Object Modelling by Registration of Multiple Range Images
,”
Image Vision Comput.
,
10
(
3
), pp.
145
155
.
34.
Faloutsos
,
C.
,
Ranganathan
,
M.
, and
Manolopoulos
,
Y.
,
1994
, “
Fast Subsequence Matching in Time-Series Databases
,”
SIGMOD Rec
,
23
(
2
), pp.
419
429
.
35.
Rafiei
,
D.
, and
Mendelzon
,
A.
,
1997
, “
Similarity-Based Queries for Time Series Data
,”
1997 ACM SIGMOD International Conference on Management of Data
,
Tucson, AZ
,
June 1
.
36.
Sakoe
,
H.
, and
Chiba
,
S.
,
1978
, “
Dynamic Programming Algorithm Optimization for Spoken Word Recognition
,”
IEEE Trans. Acoust. Speech Signal Proc.
,
26
(
1
), pp.
43
49
.
37.
Itakura
,
F.
,
1975
, “
Minimum Prediction Residual Principle Applied to Speech Recognition
,”
IEEE Trans. Acoust. Speech Signal Proc.
38.
Chu
,
S.
,
Keogh
,
E.
,
Hart
,
D.
, and
Pazzani
,
M.
,
2002
, ”
Iterative Deepening Dynamic Time Warping for Time Series
,” Proceedings of the 2002 SIAM International Conference on Data Mining, Proceedings, Society for Industrial and Applied Mathematics.
39.
Aach
,
J.
, and
Church
,
G. M.
,
2001
, “
Aligning Gene Expression Time Series With Time Warping Algorithms
,”
Bioinformatics
,
17
(
6
), pp.
495
508
.
40.
Gavrila
,
D. M.
, and
Davis
,
L. S.
,
1995
, “Towards 3-d Model-Based Tracking and Recognition of Human Movement: A Multi-view Approach,” International Workshop on Automatic Face-and Gesture-Recognition, Vol. 3, Citeseer.
41.
Munich
,
M. E.
, and
Perona
,
P.
,
1999
, “
Continuous Dynamic Time Warping for Translation-Invariant Curve Alignment With Applications to Signature Verification
,”
7th IEEE International Conference on Computer Vision
,
Kerkyra, Greece
,
Sept. 20–27
.
42.
Rath
,
T. M.
, and
Manmatha
,
R.
,
2003
, “
Word Image Matching Using Dynamic Time Warping
,”
2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
Madison, WI
,
June 18–20
.
43.
MacQueen
,
J.
,
1967
, “
Some Methods for Classification and Analysis of Multivariate Observations
,”
5th Berkeley Symposium on Mathematical Statistics and Probability
,
Berkeley, CA
,
Dec. 27, 1965–Jan. 7, 1966
.
44.
ISO 6983-1
,
2009
,
Automation Systems and Integration – Numerical Control of Machines – Program Format and Definitions of Address Words – Part 1: Data Format for Positioning, Line Motion and Contouring Control Systems
,
International Organization for Standardization
,
Geneva, Switzerland
.
45.
ISO 10303-242
,
2014
,
Industrial Automation Systems and Integration – Product Data Presentation and Exchange – Part 242: Application Protocol: Managed Model Based 3d Engineering
,
International Organization for Standardization
,
Geneva, Switzerland
.
46.
Giorgino
,
T.
,
2009
, “
Computing and Visualizing Dynamic Time Warping Alignments in R: The DTW Package
,”
J. Stat. Softw.
,
31
(
1
), pp.
1
24
.
You do not currently have access to this content.