Abstract

An evidence-theory-based interval perturbation method (ETIPM) and an evidence-theory-based subinterval perturbation method (ETSPM) are presented for the kinematic uncertainty analysis of a dual cranes system (DCS) with epistemic uncertainty. A multiple evidence variable (MEV) model that consists of evidence variables with focal elements (FEs) and basic probability assignments (BPAs) is constructed. Based on the evidence theory, an evidence-based kinematic equilibrium equation with the MEV model is equivalently transformed to several interval equations. In the ETIPM, the bounds of the luffing angular vector (LAV) with respect to every joint FE are calculated by integrating the first-order Taylor series expansion and interval algorithm. The bounds of the expectation and variance of the LAV and corresponding BPAs are calculated by using the evidence-based uncertainty quantification (UQ) method. In the ETSPM, the subinterval perturbation method (SIPM) is introduced to decompose original FE into several small subintervals. By comparing results yielded by the ETIPM and ETSPM with those by the evidence theory-based Monte Carlo method (ETMCM), numerical examples show that the accuracy and computational time of the ETSPM are higher than those of the ETIPM, and the accuracy of the ETIPM and ETSPM can be significantly improved with the increase of the number of FEs and subintervals.

References

1.
Leban
,
F. A.
,
Diaz-Gonzalez
,
J.
,
Parker
,
G. G.
, and
Zhao
,
W. F.
,
2015
, “
Inverse Kinematic Control of a Dual Crane System Experiencing Base Motion
,”
IEEE Trans. Control Syst. Technol.
,
23
(
1
), pp.
331
339
.
2.
Zi
,
B.
,
Lin
,
J.
, and
Qian
,
S.
,
2015
, “
Localization, Obstacle Avoidance Planning and Control of a Cooperative Cable Parallel Robot for Multiple Mobile Cranes
,”
Rob. Comput. Integr. Manuf.
,
34
, pp.
105
123
.
3.
Zhou
,
B.
,
Zi
,
B.
, and
Qian
,
S.
,
2017
, “
Dynamics-Based Nonsingular Interval Model and Luffing Angular Response Field Analysis of the DACS With Narrowly Bounded Uncertainty
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2599
2626
.
4.
Lu
,
B.
,
Fang
,
Y. C.
, and
Sun
,
N.
,
2018
, “
Modeling and Nonlinear Coordination Control for an Underactuated Dual Overhead Crane System
,”
Automatica
,
91
, pp.
244
255
.
5.
Zhao
,
X. S.
, and
Huang
,
J.
,
2019
, “
Distributed-Mass Payload Dynamics and Control of Dual Cranes Undergoing Planar Motions
,”
Mech. Syst. Signal Process
,
126
, pp.
636
648
.
6.
Geng
,
X. Y.
,
Li
,
M.
,
Liu
,
Y. F.
,
Zheng
,
W.
, and
Zhao
,
Z. J.
,
2019
, “
Non-Probabilistic Kinematic Reliability Analysis of Planar Mechanisms With Non-Uniform Revolute Clearance Joints
,”
Mech. Mach. Theory
,
140
, pp.
413
433
.
7.
Zhao
,
Q. Q.
,
Guo
,
J. K.
,
Zhao
,
D. T.
,
Yu
,
D. W.
, and
Hong
,
J.
,
2020
, “
A Novel Approach to Kinematic Reliability Analysis for Planar Parallel Manipulators
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081706
.
8.
Wu
,
X. Q.
,
Xu
,
K. X.
, and
He
,
X. X.
,
2020
, “
Disturbance-Observer-Based Nonlinear Control for Overhead Cranes Subject to Uncertain Disturbances
,”
Mech. Syst. Signal Process
,
139
, pp.
636
648
.
9.
Hora
,
S. C.
,
1996
, “
Aleatory and Epistemic Uncertainty in Probability Elicitation With an Example From Hazardous Waste Management
,”
Reliab. Eng. Syst. Safe.
,
54
(
2
), pp.
217
223
.
10.
Kiureghian
,
A. D.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does it Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.
11.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–12
), pp.
1031
1051
.
12.
Neumaier
,
A.
,
1990
,
Interval Methods for Systems of Equations
,
Cambridge University Press
,
Cambridge, UK
.
13.
Xia
,
B. Z.
, and
Yu
,
D. J.
,
2013
, “
Modified Interval Perturbation Finite Element Method for a Structural-Acoustic System With Interval Parameters
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041027
.
14.
Xia
,
B. Z.
,
Yu
,
D. J.
, and
Liu
,
J.
,
2013
, “
Interval and Subinterval Perturbation Methods for a Structural-Acoustic System With Interval Parameters
,”
J. Fluids Struct.
,
38
, pp.
146
163
.
15.
Wang
,
C.
, and
Qiu
,
Z. P.
,
2015
, “
Interval Analysis of Steady-State Heat Convection–Diffusion Problem With Uncertain-but-Bounded Parameters
,”
Int. J. Heat Mass Transfer
,
91
, pp.
355
362
.
16.
Sofi
,
A.
,
Muscolino
,
G.
, and
Elishakoff
,
I.
,
2015
, “
Natural Frequencies of Structures With Interval Parameters
,”
J. Sound Vib.
,
347
, pp.
79
95
.
17.
Muscolino
,
G.
,
Sofi
,
A.
, and
Giunta
,
F.
,
2018
, “
Dynamics of Structures With Uncertain-but-Bounded Parameters via Pseudo-Static Sensitivity Analysis
,”
Mech. Syst. Signal Process
,
111
, pp.
1
12
.
18.
Wang
,
C.
, and
Matthies
,
H. G.
,
2019
, “
Non-Probabilistic Interval Process Model and Method for Uncertainty Analysis of Transient Heat Transfer Problem
,”
Int. J. Therm. Sci.
,
144
, pp.
147
157
.
19.
Jiang
,
C.
,
Li
,
J. W.
,
Ni
,
B. Y.
, and
Fang
,
T.
,
2019
, “
Some Significant Improvements for Interval Process Model and Non-Random Vibration Analysis Method
,”
Comput. Methods Appl. Mech. Eng.
,
357
, p.
112565
.
20.
Ni
,
B. Y.
, and
Jiang
,
C.
,
2020
, “
Interval Field Model and Interval Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
360
, p.
112713
.
21.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
,
1990
,
Convex Models of Uncertainty in Applied Mechanics
,
Elsevier Science
,
Amsterdam
.
22.
Jiang
,
C.
,
Bi
,
R. G.
,
Lu
,
G. Y.
, and
Han
,
X.
,
2013
, “
Structural Reliability Analysis Using Non-Probabilistic Convex Model
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
83
98
.
23.
Xia
,
B.
, and
Yu
,
D.
,
2014
, “
Response Analysis of Acoustic Field With Convex Parameters
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
041017
.
24.
Zhao
,
G.
,
Liu
,
J.
,
Wen
,
G. L.
,
Wang
,
H. X.
, and
Li
,
F. Y.
,
2020
, “
A Novel Method for Non-Probabilistic Convex Modelling Based on Data From Practical Engineering
,”
Appl. Math. Model.
,
80
, pp.
516
530
.
25.
Zadeh
,
L. A.
,
1978
, “
Fuzzy Sets as a Basis for a Theory of Possibility
,”
Fuzzy Sets Syst.
,
1
(
1
), pp.
3
28
.
26.
Wang
,
C.
,
Qiu
,
Z. P.
, and
Xu
,
M.
,
2017
, “
Collocation Methods for Fuzzy Uncertainty Propagation in Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
107
, pp.
631
639
.
27.
Naskar
,
S.
,
Mukhopadhyay
,
T.
, and
Sriramula
,
S.
,
2019
, “
Spatially Varying Fuzzy Multi-Scale Uncertainty Propagation in Unidirectional Fibre Reinforced Composites
,”
Compos. Struct.
,
209
, pp.
940
967
.
28.
Zi
,
B.
, and
Zhou
,
B.
,
2016
, “
A Modified Hybrid Uncertain Analysis Method for Dynamic Response Field of the LSOAAC With Random and Interval Parameters
,”
J. Sound Vib.
,
374
, pp.
111
137
.
29.
Yin
,
H.
,
Yu
,
D. J.
,
Yin
,
S. W.
, and
Xia
,
B. Z.
,
2016
, “
Fuzzy Interval Finite Element/Statistical Energy Analysis for Mid-Frequency Analysis of Built-up Systems With Mixed Fuzzy and Interval Parameters
,”
J. Sound Vib.
,
380
, pp.
192
212
.
30.
,
H.
,
Shangguan
,
W. B.
, and
Yu
,
D. J.
,
2017
, “
A Unified Approach for Squeal Instability Analysis of Disc Brakes With Two Types of Random-Fuzzy Uncertainties
,”
Mech. Syst. Signal Process
,
93
, pp.
281
298
.
31.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton
.
32.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2004
, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Safe.
,
85
(
1–3
), pp.
39
71
.
33.
Du
,
X. P.
,
2008
, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091401
.
34.
Long
,
X. Y.
,
Mao
,
D. L.
,
Jiang
,
C.
,
Wei
,
F. Y.
, and
Li
,
G. J.
,
2019
, “
Unified Uncertainty Analysis Under Probabilistic, Evidence, Fuzzy and Interval Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
355
, pp.
1
26
.
35.
Bae
,
H. R.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
,
2004
, “
An Approximation Approach for Uncertainty Quantification Using Evidence Theory
,”
Reliab. Eng. Syst. Safe.
,
86
(
3
), pp.
215
225
.
36.
Bae
,
H. R.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
,
2004
, “
Epistemic Uncertainty Quantification Techniques Including Evidence Theory for Large-Scale Structures
,”
Comput. Struct.
,
82
(
13
), pp.
1101
1112
.
37.
,
H.
,
Shangguan
,
W. B.
, and
Yu
,
D.
,
2016
, “
An Imprecise Probability Approach for Squeal Instability Analysis Based on Evidence Theory
,”
J. Sound Vib.
,
387
, pp.
96
113
.
38.
Yin
,
S. W.
,
Yu
,
D. J.
,
Yin
,
H.
, and
Xia
,
B. Z.
,
2017
, “
A New Evidence-Theory-Based Method for Response Analysis of Acoustic System With Epistemic Uncertainty by Using Jacobi Expansion
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
419
440
.
39.
Tang
,
H. S.
,
Li
,
D. W.
,
Li
,
J. J.
, and
Xue
,
S. T.
,
2017
, “
Epistemic Uncertainty Quantification in Metal Fatigue Crack Growth Analysis Using Evidence Theory
,”
Int. J. Fatigue
,
99
, pp.
163
174
.
40.
Dempster
,
A. P.
,
1977
, “
Maximum Likelihood From Incomplete Data
,”
J. R. Statist. Soc.
,
39
(
1
), pp.
1
38
.
41.
Jiang
,
C.
,
Zhang
,
Z.
,
Han
,
X.
, and
Liu
,
J.
,
2013
, “
A Novel Evidence-Theory-Based Reliability Analysis Method for Structures With Epistemic Uncertainty
,”
Comput. Struct.
,
129
(
4
), pp.
1
12
.
You do not currently have access to this content.