The long-standing goal of computer aided design (CAD)/computer aided engineering (CAE) integration demands seamless interfaces between geometric design and engineering analysis/simulation tasks. The key challenge to this integration stems from the distinct and often incompatible roles geometric representations play, respectively, in design and analysis. This paper critically examines and compares known mesh-based and meshfree approaches to CAD/CAE integration, focusing on the basic tasks and components required for building fully integrated engineering applications. For each task, we identify the fundamental requirements and challenges and discuss how they may be met by known techniques and proposed solutions.
Issue Section:
Research Papers
References
1.
Zienkiewicz
, O. C.
, and Taylor
, R. L.
, 2000, The Finite Element Method
, 5th ed., Butterworth-Heinemann
, London
.2.
Rvachev
, V. L
, Sheiko
, T.
, Shapiro
, V.
, and Tsukanov
, I.
, 2001, “Transfinite Interpolation Over Implicity Defined Sets
,” Comput. Aided Geom. Des.
, 18
, pp. 195
–220
.3.
Höllig
, K.
, 2003, Finite Element Methods With B-Splines
, Number 26 in Frontiers in Applied Mathematics, SIAM.4.
Cook
, R. D.
, Malkus
, D. S.
, and Plesha
, M. E.
, 1989, Concepts and Applications of Finite Element Analysis
, 3rd ed., Wiley
, New York, NY
.5.
Clark
, B. W.
, 2009, Proceedings of the 18th International Meshing Roundtable
, Springer Verlag
, Berlin/Heidelberg
.6.
Hoffmann
, C. M.
, 2001, “Robustness in Geometric Computations
,” J. Comput. Inf. Eng.
, 1
, p.143
.7.
Hughes
, T.J.R.
, Cottrell
, J.A.
, and Bazilevs
, Y.
, 2005, Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
, Comput. Methods Appl. Mech. Eng.
, 194
(39–41
), pp. 4135
–4195
.8.
Sabin
, M.
, Subdivision: Tutorial Notes, Course Notes for SMI2001, Genoa, 2001.9.
Natekar
, D.
, Zhang
, X.
, and Subbarayan
, G.
, 2004, Constructive Solid Analysis
: A Hierarchical, Geometry-Based Meshless Analysis Procedure for Integrated Design and Analysis, CAD
, 36
(5
), pp. 473
–486
.10.
Brebbia
, C. A.
and Wrobel
, L. C.
, 1980, “The Boundary Element Method
,” Computer Methods in Fluids (A 81-28303 11-34)
, Pentech Press, Ltd.
, London
, pp. 26
–48
.11.
Aliabadi
, M. H.
, 2002, The Boundary Element Method
, Vol. 2
. Wiley
, Chichester, UK
.12.
Blandford
, G. E.
, Ingraffea
, A. R.
, and Liggett
, J. A.
, 1981, Two-Dimensional Stress Intensity Factor Computations Using the Boundary Element Method
, Int. J. Numer. Methods Eng.
, 17
(3
), pp. 387
–404
.13.
Apanovich
, V. N.
, 1991, Method of External Finite Element Approximations (Metod vneshnikh konechnoelementnykh aproximacij)
, Vyshejshaja shkola, Minsk (in Russian).14.
Babuška
, I.
, Strouboulis
, T.
, and Copps
, K.
, 2000, “The Design and Analysis of the Generalized Finite Element Method
,” Comput. Methods Appl. Mech. Eng.
, 181
, pp. 43
–69
.15.
Cox
, J. J.
, 1991, “Domain Composition Methods for Combining Geometric and Continuum Field Models
,” Doctoral Dissertation, Purdue University, West Lafayette, IN.16.
Charlesworth
, W. W.
, Cox
, J. J.
, and Anderson
, D. C.
, 1994, “The Domain Composition Method Applied to Poisson’s Equation in Two Dimensions
,” Int. J. Numer. Methods Eng.
, 37
(18
), pp. 3093
–3115
.17.
Babuska
, I.
, Banerjee
, U.
, and Osborn
, J.
, 2003, “Survey of Meshless and Generalized Finite Element Methods: A Unified Approach
,” Acta Numerica
, 12
, pp. 1
–125
.18.
Moës
, N.
, Dolbow
, J.
, and Belytschko
, T.
, 1999, “A Finite Element Method for Crack Growth Without Remeshing
,” Int. J. Numer. Methods Eng.
, 46
(1
), pp. 131
–150
.19.
Dolbow
, J.
, Moës
, N.
, and Belytschko
, T.
, 2000, “Discontinuous Enrichment in Finite Elements With a Partition of Unity Method
,” Finite Elem. Anal. Des.
, 36
(3–4
), pp. 235
–160
.20.
Daux
, C.
, Moës
, N.
, Dolbow
, J.
, Sukumar
, N.
, and Belytschko
, T.
, 2000, “Arbitrary Branched and Intersecting Cracks With the Extended Finite Element Method
,” Int. J. Numer. Methods Eng.
, 48
, pp. 1741
–1760
.21.
Moran
, B.
, Sukumar
, N.
, Moës
, N.
, and Belytschko
, T.
, 2000, “Extended Finite Element Method for Three-Dimensional Crack Modelling
,” Int. J. Numer. Methods Eng.
, 48
(11
), pp. 1549
–1570
.22.
Moës
, N.
, Gravouil
, A.
, and Belytschko
, T.
, 2002, “Non-Planar 3D Crack Growth by the Extended Finite Element and Level Sets Part I: Mechanical Model
,” Int. J. Numer. Methods Eng.
, 53
(11
), pp. 2549
–2568
.23.
Stolarska
, M.
, Chopp
, D. L.
, Moës
, N.
, and Belytschko
, T.
, 2001, Modelling Crack Growth by Level Sets in the Extended Finite Element Method
, Int. J. Numer. Methods Eng.
, 51
, pp. 943
–960
.24.
Gravouil
, A.
, Moës
, N.
, and Belytschko
, T.
, 2002, “Non-Planar 3D Crack Growth by the Extended Finite Element and Level Sets Part II: Level Set Update
, Int. J. Numer. Methods Eng.
, 53
(11
), pp. 2569
–2586
.25.
Babuška
, I.
, Caloz
, G.
, and Osborn
, J.
, 1994, “Special Finite Element Methods for a Class of Second Order Elliptic Problems With Rough Coefficients
,” SIAM J. Numer. Anal.
, 31
, pp. 945
–981
.26.
Liu
, W. K.
, Jun
, S.
, Li
, S.
, Adee
, J.
, and Belytschko
, T.
, 1995, “Reproducing Kernel Particle Methods for Structural Mechanics
,” Int. J. Numer. Methods Eng.
, 38
, pp. 1655
–1679
.27.
Chen
, J.-S.
, Pan
, C.
, Roque
, C. M.O. L.
, and Wang
, H.-P.
, 1998, A Lagrangian Reproducing Kernel Particle Method for Metal Forming Analysis
,” Comput. Mech.
, 22
, pp. 289
–307
.28.
Duarte
, C. A.
, and Oden
, J. T.
, 1996, “An h-p Adaptive Methods Using Clouds
,” Comput. Methods Appl. Mech. Eng.
, 139
, pp. 237
–262
.29.
Belytschko
, T.
, Krongauz
, Y.
, Organ
, D.
Fleming
, M.
, and Krysl
, P.
, 1996, “Meshless Methods: An Overview and Recent Developments
,” Comput. Methods Appl. Mech. Eng.
, 139
(1–2
), pp. 3
–47
.30.
Lucy
, L.
, 1977, “A Numerical Approach to Testing the Fission Hypothesis
,” Astron. J.
, 82
, pp. 1013
–1024
.31.
Randles
, P. W.
, and Libersky
, L. D.
, 1996, “Smoothed Particle Hydrodynamics: Some Recent Improvements and Applications
,” Comput. Methods Appl. Mech. Eng.
, 139
, pp. 375
–408
.32.
Nayroles
, B.
, Touzot
, G.
, and Villon
, P.
, 1992, “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements
,” Comput. Mech.
, 10
, pp. 307
–318
.33.
Belytschko
, T.
, Lu
, Y. Y.
, and Gu
, L.
, 1994, “Element-Free Galerkin Methods
,” Int. J. Numer. Methods Eng.
, 37
, pp. 229
–256
.34.
Krongauz
, Y.
, and Belytschko
, T.
, 1996, “Enforcement of Essential Boundary Conditions in Meshless Approximations Using Finite Elements
,” Comput. Methods Appl. Mech. Eng.
, 131
, pp. 133
–145
.35.
Lu
, Y. Y.
, Belytschko
, T.
, and Gu
, L.
, 1994, “A New Implementation of the Element-Free Galerkin
,” Comput. Methods Appl. Mech. Eng.
, 113
, pp. 397
–414
.36.
Gunter
, F. C.
, and Liu
, W. K.
, 1998, “Implementation of Boundary Conditions for Meshless Methods
,” Comput. Methods Appl. Mech. Eng.
, 163
, pp. 205
–230
.37.
Chen
, J. -S.
, and Wang
, H.-P.
, 2000, “New Boundary Condition Treatments for Meshless Computation of Contact Problems
,” Comput. Methods Appl. Mech. Eng.
, 187
(7
), pp. 441
–468
.38.
Kantorovich
, L. V.
, and Krylov
, V. I.
, 1958, Approximate Methods of Higher Analysis
, Interscience Publishers
, New York
.39.
de Boor
, C.
, 1993, “B(asic) Spline Basics
” Fundamental Developments of Computer-Aided Geometric Design
, L.
Piegl
, ed., Academic Press
, New York
.40.
Sabin
, M. A.
, 1997, “Spline Finite Elements
,” Ph.D. thesis, Leeds University, UK.41.
Luft
, B.
, Shapiro
, V.
, and Tsukanov
, I.
, 2008, “Geometrically Adaptive Numerical Integration
,” Proceedings of 2008 ACM Symposium on Solid and Physical Modeling
, Stony Brook
, NY
, pp. 147
–157
.42.
Rvachev
, V. L.
, 1982, Theory of R-functions and Some Applications
, Naukova Dumka, Kiev (in Russian).43.
Shapiro
, V.
, Tsukanov
, I.
, Rvachev
, V. L.
, Sheiko
, T. I.
, 2000, “On Completeness of RFM Solution Structures
,” Comput. Mech.
, 25
, pp. 305
–317
.44.
Rvachev
, V. L.
, Sheiko
, T. I.
, Shapiro
, V.
, and Tsukanov
, I.
, 2001, “Transfinite Interpolation Over Implicitly Defined Sets
,” Comput. Aided Geom. Des.
, 18
(4
), pp. 195
–220
.45.
Rvachev
, V. L.
, and Sheiko
, T. I.
, 1996, “R-Functions in Boundary Value Problems in Mechanics
,” Appl. Mech.
, 48
, pp. 151
–188
.46.
Tsukanov
, I.
, and Posireddy
, S. R.
, “Hybrid Method of Engineering Analysis: Combining Meshfree Method With Distance Fields and Collocation Technique
,” J. Comput. Inf. Sci. Eng.
(in press).47.
Freytag
, M.
, Shapiro
, V.
, and Tsukanov
, I.
, 2006, “Field Modeling With Sampled Distances
,” CAD
, 38
(2
), pp. 87
–100
.48.
Kumar
, A.V.
, Padmanabhan
, S.
, and Burla
, R.
, 2008, “Implicit Boundary Method for Finite Element Analysis Using Non-Conforming Mesh or Grid
,” Int. J. Numer. Methods Eng.
, 74
(9
), pp. 1421
–1447
.49.
Leymarie
, F.
, and Levine
, M. D.
, 1992, “Fast Raster Scan Distance Propagation on the Discrete Rectangular Lattice
,” Comput. Vis., Graph. Image Process.
, 55
(1
), pp. 84
–94
.50.
Cuisenaire
, O.
, 1999, “Distance Transformations: Fast Algorithms and Applications to Medical Image Processing
,” Ph.D. thesis, Universite Catolique de Louvain, B-1348 Louvain-la-Neuve, Belgium.51.
Chiang
, C.-S.
, 1992, “The Euclidean Distance Transform
,” Ph.D. thesis, Computer Sciences, Purdue University, West Lafayette, IN.52.
Intact Solutions, LLC, “
FieldMagic
,” http://sal-cnc.me.wisc.eduhttp://sal-cnc.me.wisc.edu53.
Tsukanov
, I.
, and Shapiro
, V.
, 2002, “The Architecture of SAGE—A Meshfree System Based on RFM
,” Eng. Comput.
, 18
(4
), pp. 295
–311
.54.
Scan&Solve for Rhino, Intact Solutions, LLC, www.scanandsolve.com
55.
Bathe
, K. J.
, 1982, Finite Element Procedures in Engineering Analysis
, 1st ed., Prentice-Hall, Inc.
, New Jersey
.56.
Chen
, J. S.
, Roque
, C. M.
, Pan
, C.
, and Button
, S. T.
, 1998, “Analysis of Metal Forming Process Based on Meshless Method
,” J. Mater. Process. Technol.
, 80–81
(1
), pp. 642
–646
.57.
Chen
, J. S.
, Pan
, C.
, and Wu
, C. T.
, 1997, “Large Deformation Analysis of Rubber Based on a Reproducing Kernel Particle Method
,” Comput. Mech.
, 19
(3
), pp. 211
–227
.58.
Chen
, J. S.
, Pan
, C.
, Cheng
, T. W.
, and Liu
, W. K.
, 1996, “Reproducing Kernel Particle Methods for Large Deformation Analysis of Non-Linear Structures
,” Comput. Methods Appl. Mech. Eng.
, 139
(1–4
), pp. 195
–227
.59.
Rvachev
, V. L.
, Kurpa
, L. V.
, Nasriddinov
, Kh. F.
, and Shevchenko
, A. N.
, 1987, “The R-Function Method in Problems of Nonlinear Deformation of Plates
,” Int. Appl. Mech.
, 23
(9
), pp. 861
–866
.60.
Lyubitskaya
, E. I.
, Kurpa
, L. V.
, and Morachkovskaya
, I. O.
, 2010, “The r-Function Method Used to Solve Nonlinear Bending Problems for Orthotropic Shallow Shells on an Elastic Foundation
,” Int. Appl. Mech.
, 46
(6
), pp. 660
–668
.61.
Lee
, N. -S.
, and Bathe
, K.-J.
, 1994, “Error Indicators and Adaptive Remeshing in Large Deformation Finite Element Analysis
,” Finite Elem. Anal. Des.
, 16
(2
), pp. 99
–139
.62.
Shapiro
, V.
, and Tsukanov
, I.
, 1999, “Meshfree Simulation of Deforming Domains
,” CAD
, 31
(7
), pp. 459
–471
.63.
Chen
, J.
, Shapiro
, V.
, Suresh
, K.
, and Tsukanov
, I.
, 2007, “Shape Optimization With Topological Changes and Parametric Control
,” Int. J. Numer. Methods Eng.
, 71
(3
), pp. 313
–346
.64.
Wriggers
, P.
, 2002, Computational Contact Mechanics
, Wiley
, New York
.65.
Williams
, J.
, and O’Connor
, R.
, 1999, “Discrete Element Simulation and the Contact Problem
,” Arch. Comput. Methods Eng.
, 6
, pp. 279
–304
.66.
Hallquist
, J. O.
, Goudreau
, G. L.
, and Benson
, D. J.
, 1985, “Sliding Interfaces With Contact-Impact in Large-Scale Lagrangian Computations
,” Comput. Methods Appl. Mech. Eng.
, 51
, pp. 107
–137
.67.
Parisch
, H.
, 1989, “A Consistent Tangent Stiffness Matrix for Three-Dimensional Non-Linear Contact Analysis
,” Int. J. Numer. Methods Eng.
, 28
, pp. 1803
–1812
.68.
Wriggers
, P.
, and Simo
, J. C.
, 1985, “A Note on Tangent Stiffness for Fully Nonlinear Contact Problems
,” Commun. Appl. Numer. Methods
, 1
, pp. 199
–203
.69.
Wriggers
, P.
, Vu
, V. T.
, and Stein
, E.
, 1990, “Finite Element Formulation of Large Deformation Impact-Contact Problems With Friction
,” Comput. Struct.
, 37
, pp. 319
–331
.70.
Gallego
, F. J.
, and Anza
, J. J.
, 1989, “A Mixed Finite Element Model for the Elastic Contact Problem
,” Int. J. Numer. Methods Eng.
, 28
, pp. 1249
–1264
.71.
Papadopoulous
, P.
, and Talyor
, R. L.
, 1992, “A Mixed Formulation for the Finite Element Solution of Contact Problems
,” Comput. Methods Appl. Mech. Eng.
, 94
, pp. 373
–389
.72.
Simo
, J. C.
, Wriggers
, P.
, and Talyor
, R. L.
, 1985, “A Perturbed Lagrangian Formulation for the Finite Element Solution of Contact Problems
,” Comput. Methods Appl. Mech. Eng.
, 50
, pp. 163
–180
.73.
Bernardi
, C.
, Maday
, Y.
, and Patera
, A. T.
, “A New Nonconforming Approach to Domain Decomposition: The Mortar Element Method
,” Nonlinear Partial Differential Equations and Their Applications
, College de France Seminar
, Vol. 11
, pp. 1989
–1991
.74.
Belgacem
, F. B.
, 1999, “The Mortar Finite Element Method With Lagrange Multipliers
,” Numerische Mathematik
, 84
(2
), pp. 173
–197
.75.
McDevitt
, T. W.
, and Laurson
, T. A.
, 2000, “A Mortar-Finite Element Formulation for Frictional Contact Problems
,” Int. J. Numer. Methods Eng.
, 48
(10
), pp. 1525
–1547
.76.
Padmanabhan
, V.
, and Laursen
, T. A.
, 2001, “A Framework for Development of Surface Smoothing Procedures in Large Deformation Frictional Contact Analysis
,” Finite Elem. Anal. Des.
, 37
, pp. 173
–198
.77.
El-Abbasi
, N.
, Meguid
, S. A.
, and Czekanski
, A.
, 2001, “On the Modelling of Smooth Contact Surfaces Using Cubic Splines
,” Int. J. Numer. Methods Eng.
, 50
, pp. 953
–967
.78.
Rvachev
, V. L.
, and Sinekop
, N. S.
, 1990, R-Functions Method in Problems of the Elasticity and Plasticity Theory
, Naukova Dumka
, Kiev
(in Russian).79.
Guangyao
, L.
, and Belytschko
, T.
, 2001, “Element-Free Galerkin Method for Contact Problems in Metal Forming Analysis
,” Eng. Comput.
, 18
(1/2
), pp. 62
–78
.80.
Belytschko
, T.
, and Fleming
, M.
, 1999, “Smoothing, Enrichment and Contact in the Element-Free Galerkin Method
,” Comput. Struct.
, 71
, pp. 173
–195
.81.
Chen
, J. S.
, and Wang
, H. P.
, 2000, “New Boundary Condition Treatments in Meshfree Computation of Contact Problems
,” Comput. Methods Appl. Mech. Eng.
, 187
(3–4
), pp. 441
–468
.82.
Campbell
, J.
, Vignjevic
, R.
, and Libersky
, L.
, 2000, “A Contact Algorithm for Smoothed Particle Hydrodynamics
,” Comput. Methods Appl. Mech. Eng.
, 184
, pp. 49
–65
.83.
Fernandez-Mendez
, S.
, and Huerta
, A.
, 2004, “Imposing Essential Boundary Conditions in Mesh-Free Methods
,” Comput. Methods Appl. Mech. Eng.
, 193
(12–14
), pp. 1257
–1275
.84.
Grishin
, A.
, 2010, “A Mesh-Free Finite Element Solution for Unilateral Contact Problems
,” Doctoral thesis, Arizona State University, Tempe, AZ.85.
Lysenko
, M.
, 2011, “Fourier Collision Detection
,” Tech report 2011-1, Spatial Automation Laboratory, University of Wisconsin—Madison
.86.
Jackson
, T. R.
, Patrikalakis
, N. M.
, Sachs
, E. M.
, and Cima
, M. J.
, 1998, “Modeling and Designing Components With Locally Controlled Composition
,” Proceedings of Solid Freeform Fabrication Symposium
, Austin, TX
.87.
Hua
, J.
, He
, Y.
, and Qin
, H.
, 2005, “Trivariate Simplex Splines for Inhomogeneous Solid Modeling in Engineering Design
,” ASME J. Comput. Inform. Sci. Eng.
, 5
, pp. 149
–157
.88.
Yang
, P.
, and Qian
, X.
, 2007, “A B-Spline-Based Approach to Heterogeneous Objects Design and Analysis
,” CAD
, 39
, pp. 95
–111
.89.
Markworth
, A. J.
, and Saunders
, J. H.
, 1995, “A Model of Structure Optimization for a Functionally Graded Material
,” Mat. Lett.
, 22
, pp. 103
–107
.90.
Samanta
, K.
, and Koc
, B.
, 2004, “Heterogeneous Object Design With Material Feature Blending
,” Comput.-Aided Des. Appl.
, 1
(1–4
), pp. 429
–439
.91.
Biswas
, A.
, Shapiro
, V.
, and Tsukanov
, I.
, 2004, “Heterogeneous Material Modeling With Distance Fields
,” Comput. Aided Geom. Des.
, 21
(3
), pp. 215
–242
.92.
Tsukanov
, I.
, and Shapiro
, V.
, 2005, “Meshfree Modeling and Analysis of Physical Fields in Heterogeneous Media
,” Adv. Comput. Math.
, 23
(1–2
), pp. 95
–124
.93.
Biswas
, A.
, Fenves
, S. J.
, Shapiro
, V.
, and Sriram
, R.
, 2008, “Representation of Heterogeneous Material Properties in the Core Product Model
,” Eng. Comput.
, 24
, pp. 43
–58
.94.
Gay
, D.
, 2003, Composite Materials: Design and Applications
, CRC Press
, New York
.95.
Shapiro
, V.
, 2007, “Semi-Analytic Geometry With R-Functions
, Acta Numerica
, pp. 239
–303
.96.
Kaw
, A. K.
, 2006, Mechanics of Composite Materials
, Mechanical Engineering Series, Taylor & Francis
, London
.97.
Hamila
, N.
, Boisse
, P.
Sabourin
, F.
, and Brunet
, M.
, 2009, “A Semi-Discrete Shell Finite Element for Textile Composite Reinforcement Forming Simulation
,” Int. J. Numer. Methods Eng.
, 79
(12
), pp. 1443
–1466
.98.
Kim
, H. J.
, and Swan
, C. C.
, 2003, “Voxel-Based Meshing and Unit-Cell Analysis of Textile Composites
,” Int. J. Numer. Methods Eng.
, 56
(7
), pp. 977
–1006
.99.
Fish
, J.
, and Yuan
, Z.
, 2005, “Multiscale Enrichment Based on Partition of Unity
,” Int. J. Numer. Methods Eng.
, 62
(10
), pp. 1341
–1359
.100.
Fish
, J.
, and Yu
, Q.
, 2001, “Multiscale Damage Modelling for Composite Materials: Theory and Computational Framework
,” Int. J. Numer. Methods Eng.
, 52
(1–2
), pp. 161
–191
.101.
Kim
, D.-J.
, Pereira
, J. P. A.
, and Duarte
, C. A.
, 2009, “Analysis of Three-Dimensional Fracture Mechanics Problems: A Two-Scale Approach Using Coarse Generalized Fem Meshes
,” Int. J. Numer. Methods Eng.
, 81
(3
), pp. 335
–365
.102.
Tsukanov
, I.
, and Shapiro
, V.
, 2007, “Adaptive Multiresolution Refinement With Distance Fields
,” Int. J. Numer. Methods Eng.
, 72
(11
), pp. 1355
–1386
.103.
Forsey
, D. R.
, and Bartels
R. H.
, 1988, “Hierarchical B-Spline Refinement
,” Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques
, ACM Press
, pp. 205
–212
.104.
Dumont
, S.
, Goubet
, O.
, Ha-Duong
, T.
, and Pierre Villon, 2006, “Meshfree Methods and Boundary Conditions
,” Int. J. Numer. Methods Eng.
, 67
, pp. 989
–1011
.105.
Glowinski
, R.
, Lawton
, W. M.
, Ravachol
, M.
, and Tenenbaum
, E.
, 1990, “Wavelet Solutions of Linear and Nonlinear Elliptic, Parabolic and Hyperbolic Problems in One Space Dimension
,” Computing Methods in Applied Sciences and Engineering
, R.
Glowinski
, and A.
Lichnewsky
, eds., SIAM
, Philadelphia
.106.
Li
, S.
, and Liu
, W. K.
, 2002, “Meshfree and Particle Methods and Their Applications
,” Appl. Mech. Rev.
, 55
(1
), pp. 1
–34
.107.
Rvachev
, V. L.
, Sheiko
, T. I.
, and Shapiro
, V.
, 1999, “The R-Function Method in Boundary-Value Problems With Geometric and Physical Symmetry
,” J. Math. Sci.
, 97
(1
), pp. 3888
–3899
.108.
Hansen
, A. C.
, and Garnich
, M. R.
, 1995, “A Multicontinuum Theory for Structural Analysis of Composite Material Systems
,” Composites Eng.
, 5
(9
), pp. 1091
–1103
.109.
Hansen
, A. C.
, and Garnich
, M. R.
, 1997, “A Multicontinuum Theory for Thermal-Elastic Finite Element Analysis of Composite Materials
,” J. Composite Mater.
, 31
, pp. 71
–86
.110.
Key
, C. T.
, Schumacher
, S.
, and Hansen
, A. C.
, 2007, “Progressive Failure Modeling of Woven Fabric Composite Materials Using Multicontinuum Theory
,” Composites Part B
, 38
, pp. 247
–257
.111.
Cao
, G.
, 2004, Nanostructures & Nanomaterials: Synthesis, Properties & Applications
, Imperial College Press
, London
.112.
Balbuena
, P. B.
, and Seminario
, J. M.
, 2007, “Nanomaterials: Design and Simulation
,” Theoretical and Computational Chemistry
, Elsevier
, Amsterdam
.113.
Zhang
, S.
, Khare
, R.
, Lu
, Q.
, and Belytschko
, T.
, 2007, “A Bridging Domain and Strain Computation Method for Coupled Atomistic-Continuum Modelling of Solids
,” Int. J. Numer. Methods Eng.
, 70
(8
), pp. 913
–933
.114.
Liu
, W. K.
, Karpov
, E. G.
, and Park, H. S., 2006, Nano Mechanics and Materials: Theory, Multiscale Methods and Applications
, Wiley
, New York
.115.
Tang
, Z.
, and Aluru
, N. R.
, 2008, “Multiscale Mechanical Analysis of Silicon Nanostructures by Combined Finite Temperature Models
,” Comput. Methods Appl. Mech. Eng.
, 197
(41–42
), pp. 3215
–3224
.116.
Saether
, E.
, Yamakov
, V.
, and Glaessgen
, E.
, 2008, “New Developments in the Embedded Statistical Coupling Method: Atomistic/Continuum Crack Propagation
,” Proceedings of 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit
, Schaumburg, IL
.117.
Felippa
, C. A.
, and Park
, K. C.
, 2004, “Synthesis Tools for Structural Dynamics and Partitioned Analysis of Coupled Systems
, Multi-Physics and Multi-Scale Computer Models in Nonlinear Analysis and Optimal Design of Engineering Structures under Extreme Conditions (Proceedings NATO-ARW PST ARW980268)
, A.
Ibrahimbegovic
, and B.
Brank
, eds., Ljubliana, Slovenia
, IOS Press
, pp. 50
–100
.118.
Park
, K. C.
, Felippa
, C. A.
, and Rebel
, G.
, 2002, “A Simple Algorithm for Localized Construction of Non-Matching Structural Interfaces
,” Int. J. Numer. Methods Eng.
, 53
, pp. 1261
–1285
.119.
Felippa
, C. A.
, Ross
, M. R.
, Sprague
, M. A.
and Park
, K. C.
, 2009, “Treatment of Acoustic Fluid-Structure Interaction by Localized Lagrange Multipliers and Comparison to Alternative Interface Coupling Methods
,” Comput. Methods Appl. Mech. Eng.
, 198
, pp. 986
–1005
.120.
Felippa
, C. A.
, Park
, K. C.
, and Ross
, M. R.
, 2010, “A Classification of Interface Treatments for FSI
,” Fluid Structure Interaction, Lecture Notes in Computational Science and Engineering
, Vol. 73
, chapter, Springer-Verlag
, pp. 27
–52
.121.
Legay
, A.
, Chessa
, J.
, and Belytschko
, T.
, 2006, “An Eulerian–Lagrangian Method for Fluid-Structure Interaction Based on Level Sets
,” Comput. Methods Appl. Mech. Eng.
, 195
(17–18
), pp. 2070
–2087
.122.
Wang
, H.
, Chessa
, J.
, Liu
, W. K.
, and Belytschko
, T.
, 2008, “The Immersed/Fictitious Element Method for Fluid-Structure Interaction: Volumetric Consistency, Compressiblity and Thin Members
,” Int. J. Numer. Methods Eng.
, 74
(1
), pp. 32
–55
.123.
Casadei
, F.
, and Leconte
, N.
, 2010, “Coupling Finite Elements and Finite Volumes by Lagrange Multipliers for Explicit Dynamic Fluid Structure Interaction
, Int. J. Numer. Methods Eng.
, 86
(1
), pp. 1
–17
.124.
Peskin
, C. S.
, 2002, “The Immersed Boundary Method
, Acta Numerica, pp. 479
–517
.125.
Osher
, S.
, and Fedkiw
, R. P.
, 2003, Level Set Methods and Dynamic Implicit Surfaces
, Applied Mathematical Sciences, Springer
, New York
.126.
Fedkiw
, R.
, Aslam
, T.
, Merriman
, B.
, and Osher
, S.
, 1999, “A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)
,” J. Comput. Phys.,
152
, pp. 457
–492
.127.
Mittal
, R.
, Dong
, H.
, Bozkurttas
, M.
, Najjar
, F. M.
, Vargas
, A.
, and von Loebbecke
, A.
, 2008, “A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,” J. Comput. Phys.
, 227
, pp. 4825
–4852
.128.
Lew
, A. J.
, and Buscaglia
, G. C.
, 2008, “A Discontinuous-Galerkin-Based Immersed Boundary Method
,” Int. J. Numer. Methods Eng.
, 76
(4
), pp. 427
–454
.129.
Wang
, H.
, and Belytschko
, T.
, 2009, “Fluid-Structure Interaction by the Discontinuous-Galerkin Method for Large Deformations
, Int. J. Numer. Methods Eng.
, 77
(1
), pp. 30
–49
.130.
Rüberg
, T.
, and Cirak
, F.
, 2011, “An Immersed Finite Element Method With Integral Equation Correction
, Int. J. Numer. Methods Eng.
86
(1
), pp. 93
–114
.131.
Zhang
, Y. F.
, Liu
, W. K.
, and Jun
, S.
, 1995, “Reproducing Kernel Particle Methods
,” Int. J. Numer. Methods Fluids
, 20
, p. 439
.132.
Sethian
, J. A.
, 1999, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Material Sciences
, 2nd ed., Cambridge University Press
, Cambridge
.133.
Tsukanov
, I.
, Shapiro
, V.
, and Zhang
, S.
, 2003, “A Meshfree Method for Incompressible Fluid Dynamics Problems
, Int. J. Numer. Methods Eng.
, 58
(1
), pp. 127
–158
.134.
Zhang
, L. T.
, Liu
, W. K.
, Li
, S. F.
, Qian
, D.
, and Hao
, S.
, 2002, “Survey of Multi-Scale Meshfree Particle Methods
,” Lect. Notes Comput. Sci. Eng.
, 26
, pp. 441
–458
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.