Compliant mechanisms are designed to be flexible to achieve a specified motion as a mechanism. Such mechanisms can function as compliant thermal actuators in micro-electromechanical systems by intentionally designing configurations that exploit thermal expansion effects in elastic material when appropriate portions of the mechanism structure are heated or are subjected to an electric potential. This paper presents a new structural optimization method for the design of compliant thermal actuators based on the level set method and the finite element method (FEM). First, an optimization problem is formulated that addresses the design of compliant thermal actuators considering the magnitude of the displacement at the output location. Next, the topological derivatives that are used when introducing holes during the optimization process are derived. Based on the optimization formulation, a new structural optimization algorithm is constructed that employs the FEM when solving the equilibrium equations and updating the level set function. The re-initialization of the level set function is performed using a newly developed geometry-based re-initialization scheme. Finally, several design examples are provided to confirm the usefulness of the proposed structural optimization method.

1.
Ananthasuresh
,
G. K.
, and
Moulton
,
T.
, 2002, “
Micromechanical Devices With Embedded Electrothermal-Compliant Actuation
,”
Sens. Actuators, A
0924-4247,
90
, pp.
38
48
.
2.
Prasanna
,
S.
, and
Spearing
,
S. M.
, 2007, “
Materials Selection and Design of Microelectrothermal Bimaterial Actuators
,”
J. Microelectromech. Syst.
1057-7157,
16
, pp.
248
259
.
3.
Schweizer
,
S.
,
Calmes
,
S.
,
Laudon
,
M.
, and
Renaud
,
R.
, 1999, “
Thermally Actuated Optimal Microscanner With Large Angle and Low Consumption
,”
Sens. Actuators, A
0924-4247,
76
, pp.
470
477
.
4.
Pai
,
M.
, and
Tien
,
N. C.
, 2000, “
Low Voltage Electrothermal Vibromotor for Silicon Optical Bench Applications
,”
Sens. Actuators, A
0924-4247,
83
, pp.
237
243
.
5.
Kwon
,
H. N.
,
Jeong
,
S. H.
,
Lee
,
S. K.
, and
Lee
,
J. H.
, 2003, “
Design and Characterization of a Micromachined Inchworm Motor With Thermoelastic Linkage Actuators
,”
Sens. Actuators, A
0924-4247,
103
, pp.
143
149
.
6.
Stevenson
,
M.
,
Yang
,
P.
,
Lai
,
Y.
, and
Mechefske
,
C.
, 2007, “
Development of a Bidirectional Ring Thermal Actuator
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
2049
2054
.
7.
Long
,
Q.
,
Park
,
J. -S.
, and
Gianchandani
,
Y. B.
, 2001, “
Bent-Beam Electrothermal Actuators—Part I: Single Beam and Cascaded Devices
,”
J. Microelectromech. Syst.
1057-7157,
10
, pp.
247
254
.
8.
Park
,
J. -S.
,
Chu
,
A. D.
, and
Gianchandani
,
Y. B.
, 2001, “
Bent-Beam Electrothermal Actuators—Part II: Linear and Rotary Microengines
,”
J. Microelectromech. Syst.
1057-7157,
10
, pp.
255
262
.
9.
Chen
,
R. S.
,
Kung
,
C.
, and
Lee
,
G. B.
, 2002, “
Analysis of the Optimal Dimension on the Electrothermal Microactuator
,”
Journal of Micromechanics and Microengineering
,
12
, pp.
291
296
.
10.
Wang
,
Y.
,
Li
,
Z.
,
Mccormick
,
D. T.
, and
Tien
,
N. C.
, 2003, “
A Micromachined RF Microrelay With Electrothermal Actuation
,”
Sens. Actuators, A
0924-4247,
103
, pp.
231
236
.
11.
Bendsøe
,
M. S.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
224
.
12.
Suzuki
,
K.
, and
Kikuchi
,
N.
, 1991, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
93
, pp.
291
318
.
13.
Díaaz
,
A. R.
, and
Kikuchi
,
N.
, 1992, “
Solutions to Shape and Topology Eigenvalue Optimization Problems Using a Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
35
, pp.
1487
1502
.
14.
Ma
,
Z. D.
,
Kikuchi
,
N.
, and
Cheng
,
H. C.
, 1995, “
Topological Design for Vibrating Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
121
, pp.
259
280
.
15.
Li
,
J.
, and
Ananthasuresh
,
G. K.
, 2001, “
A Quality Study on the Excimer Laser Micromaching of Electro-Thermal-Compliant Micro Devices
,”
J. Micromech. Microeng.
0960-1317,
11
, pp.
38
47
.
16.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part I: One-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
6577
6604
.
17.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
6505
6627
.
18.
Heo
,
S.
, and
Kim
,
Y. Y.
, 2007, “
Optimal Design and Fabrication of MEMS Rotary Thermal Actuators
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
2241
2247
.
19.
Heo
,
S.
,
Yoon
,
G. H.
, and
Kim
,
Y. Y.
, 2008, “
Minimum Scale Controlled Topology Optimization and Experimental Test of a Micro Thermal Actuator
,”
Sens. Actuators, A
0924-4247,
141
, pp.
603
609
.
20.
Li
,
Y.
,
Saitou
,
K.
, and
Kikuchi
,
N.
, 2004, “
Topology Optimization of Thermally Actuated Compliant Mechanisms Considering Time-Transient Effect
,”
Finite Elem. Anal. Design
0168-874X,
40
, pp.
1317
1331
.
21.
Sardan
,
O.
,
Peterson
,
D. H.
,
Mølhave
,
K.
,
Sigmund
,
O.
, and
Bøggild
,
P.
, 2008, “
Topology Optimized Electrothermal Polysilicon Microgrippers
,”
Microelectron. Eng.
0167-9317,
85
, pp.
1096
1099
.
22.
Díaz
,
A. R.
, and
Sigmund
,
O.
, 1995, “
Checkerboard Patterns in Layout Optimization
,”
Struct. Optim.
0934-4373,
10
, pp.
40
45
.
23.
Sigmund
,
O.
, and
Petersson
,
J.
, 1998, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
0934-4373,
16
, pp.
68
75
.
24.
Haber
,
R. B.
,
Jog
,
C. S.
, and
Bendsøe
,
M. P.
, 1996, “
A New Approach to Variable-Topology Shape Design Using a Constraint on Parameter
,”
Struct. Optim.
0934-4373,
11
, pp.
1
12
.
25.
Yoon
,
G. H.
,
Kim
,
Y. Y.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2004, “
High-Free Topology Optimization with Embedded Translation-Invariant Differentiable Wavelet Shrinkage
,”
Struct. Multidiscip. Optim.
1615-147X,
27
, pp.
139
150
.
26.
Duysinx
,
P.
, and
Bendsøe
,
M. P.
, 1998, “
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
, pp.
1453
1478
.
27.
Sethian
,
J. A.
, and
Wiegmann
,
A.
, 2000, “
Structural Boundary Design via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
0021-9991,
163
, pp.
489
528
.
28.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
, 2003, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
227
246
.
29.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.
, 2004, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
0021-9991,
194
, pp.
363
393
.
30.
Osher
,
S.
, and
Sethian
,
J. A.
, 1988, “
Front Propagating With Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
0021-9991,
79
, pp.
12
49
.
31.
Allaire
,
G.
, and
Jouve
,
F.
, 2005, “
A Level-Set Method for Vibration and Multiple Loads Structural Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
, pp.
3269
3290
.
32.
Wang
,
M. Y.
,
Chen
,
S.
,
Wang
,
X.
, and
Mei
,
Y.
, 2005, “
Design of Multimaterial Compliant Mechanisms Using Level-Set Methods
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
941
956
.
33.
Luo
,
J.
,
Luo
,
Z.
,
Chen
,
S.
,
Tong
,
L.
, and
Wang
,
M. Y.
, 2008, “
A New Level Set Method for Systematic Design of Hinge-Free Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
318
331
.
34.
Céa
,
J.
,
Garreau
,
S.
,
Guillaume
,
P.
, and
Masmoudi
,
M.
, 2000, “
The Shape and Topological Optimizations Connection
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
188
, pp.
713
726
.
35.
Yamasaki
,
S.
,
Nisiwaki
,
S.
,
Yamada
,
T.
,
Izui
,
K.
, and
Yoshimura
,
M.
, 2010, “
A Structural Optimization Method Based on the Level Set Method Using a New Geometry-based Re-Initialization Scheme
,”
Int. J. Numer. Methods Eng.
0029-5981,
83
, pp.
1580
1624
.
36.
Sethian
,
J. A.
, 1999,
Level Set Method and Fast Marching Methods
,
Cambridge University Press
,
Cambridge
, pp.
112
113
.
37.
Silva
,
E. C. N.
,
Fonseca
,
J. S. O.
, and
Kikuchi
,
N.
, 1997, “
Optimal Design of Piezoelectric Microstructures
,”
Journal of Computational Mechanics
,
19
, pp.
397
410
.
38.
Nishiwaki
,
S.
,
Min
,
S.
,
Yoo
,
J.
, and
Kikuchi
,
N.
, 2001, “
Optimal Structural Design Considering Flexibility
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4457
4504
.
39.
Yamada
,
T.
,
Yamasaki
,
S.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
, 2008, “
Structural Optimization for Compliant Mechanisms Based on the Level Set Method
,” Transactions of the Japan Society for Computational Engineering and Science No. 20080001.
40.
Choi
,
K. K.
, and
Kim
,
N.
, 2005,
Structural Sensitivity Analysis and Optimization 1
,
Springer
,
New York
, pp.
122
125
.
41.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
, 1994, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Optim.
0934-4373,
8
, pp.
42
51
.
42.
Allaire
,
G.
,
Gournay
,
F.
,
Jouve
,
F.
, and
Toader
,
A. M.
, 2005, “
Structural Optimization Using Topological and Shape Sensitivity via a Level Set Method
,”
Contr. Cybernet.
0324-8569,
34
, pp.
59
80
.
43.
He
,
L.
,
Kao
,
C.
, and
Osher
,
S.
, 2007, “
Incorporating Topological Derivatives Into Shape Derivatives Based Level Set Methods
,”
J. Comput. Phys.
0021-9991,
225
, pp.
891
909
.
44.
Sussman
,
M.
,
Smerreka
,
P.
, and
Osher
,
S. J.
, 1994, “
A Level Set Method for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
0021-9991,
114
, pp.
146
159
.
You do not currently have access to this content.