A constructive algorithm is proposed and illustrated for parametric estimation in delayed nonlinear time-varying dynamic system models from available data. The algorithm uses Chebyshev spectral collocation and optimization. The problems addressed are estimations with complete state vector and incomplete state vector availability. Using an equivalent algebraic description of dynamical systems by Chebyshev spectral collocation and data, a standard least-squares residual cost function is set up for complete and incomplete information cases. Minimization of this cost yields the unique solution for the unknown parameters for estimation with complete state availability, only owing to the fact that the cost function is quadratic and positive definite. Such arguments cannot be made for estimation with incomplete state availability as the cost function is positive definite albeit a nonlinear function of the unknown parameters and states. All the algorithms are presented stepwise and are illustrated using suitable examples.

1.
Liu
,
Z.
, and
Yuan
,
R.
, 2004, “
Stability and Bifurcation in a Delayed Predator–Prey System With Bedington–DeAngelis Functional Response
,”
J. Math. Anal. Appl.
0022-247X,
296
, pp.
521
537
.
2.
Lema
,
M. A.
,
Golombek
,
D. A.
, and
Echave
,
J.
, 2000, “
Delay Model of the Circadian Pacemaker
,”
J. Theor. Biol.
0022-5193,
204
, pp.
565
573
.
3.
Gourley
,
S. A.
, and
Kuang
,
Y.
, 2004, “
A Stage Structured Predator-Prey Model and Its Dependence on Maturation Delay and Death Rate
,”
J. Math. Biol.
0303-6812,
49
, pp.
188
200
.
4.
Li
,
Y.
, and
Kuang
,
Y.
, 2002, “
Periodic Solutions in Periodic State-Dependent Delay Equations and Population Models
,”
Proc. Am. Math. Soc.
0002-9939,
130
(
5
), pp.
1345
1353
.
5.
Mann
,
B. P.
,
Garg
,
N. K.
,
Young
,
K. A.
, and
Helvey
,
A. M.
, 2005, “
Milling Bifurcations From Structural Asymmetry and Nonlinear Generation
,”
Nonlinear Dyn.
0924-090X,
42
, pp.
319
337
.
6.
Balachandran
,
B.
, 2001, “
Nonlinear Dynamics of Milling Processes
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
, pp.
793
819
.
7.
Mann
,
B. P.
, and
Young
,
K. A.
, 2006, “
An Empirical Approach for Delayed Oscillator Stability and Parametric Identification
,”
Proc. R. Soc. London, Ser. A
0950-1207,
462
, pp.
2145
2160
.
8.
Deshmukh
,
V.
, 2008, “
Spectral Collocation-Based Optimization in Parameter Estimation for Nonlinear Time-Varying Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
, p.
011010
.
9.
Deshmukh
,
V.
,
Butcher
,
E. A.
, and
Bueler
,
E.
, 2008, “
Dimensional Reduction of Nonlinear Delay Differential Equations With Periodic Coefficients Using Chebyshev Spectral Collocation
,”
Nonlinear Dyn.
0924-090X,
52
, pp.
137
149
.
10.
Hauber
,
R.
, 1997, “
Numerical Treatment of Retarded Differential-Algebraic Equations by Collocation Methods
,”
Adv. Comput. Math.
1019-7168,
7
, pp.
573
592
.
11.
Hale
,
J.
, 1977,
Theory of Functional Differential Equations, Applied Mathematical Sciences 3
,
Springer-Verlag
,
New York
.
12.
Masri
,
S. F.
, and
Caughey
,
T. K.
, 1979, “
A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
433
447
.
13.
Trefethen
,
L. N.
, 2000,
Spectral Methods in MATLAB, Software, Environments, and Tools, Society for Industrial and Applied Mathematics
,
SIAM
,
Philadelphia, PA
.
14.
Shampine
,
L. F.
, and
Thomson
,
F.
, 2001, “
Solving DDEs in MATLAB
,”
Appl. Numer. Math.
0168-9274,
37
, pp.
441
458
.
15.
Leipholz
,
H.
, 1977,
Stability Theory
,
Academic
,
New York
.
16.
Herrmann
,
G.
, 1971, “
Dynamics and Stability of Mechanical Systems With Follower Forces
,”
NASA
Contractor Report No. NASA CR-1782, Stanford University.
17.
Deshmukh
,
V.
, 2010, “
Approximate Stability Analysis and Computation of Solutions of Nonlinear Delay Differential Algebraic Equations With Time Periodic Coefficients
,”
J. Vib. Control
1077-5463,
16
(
7-8
), pp.
1235
1260
.
18.
Butcher
,
E. A.
, and
Sinha
,
S. C.
, 1998, “
Symbolic Computation of Local Stability and Bifurcation Surfaces for Nonlinear Time-Periodic Systems
,”
Nonlinear Dyn.
0924-090X,
17
, pp.
1
21
.
You do not currently have access to this content.