This paper introduces a new interpretation of the energetic coefficient of restitution, especially applicable to contact involving multibody systems. This interpretation generalizes the concept of the energetic coefficient of restitution and allows for consideration of simultaneous multiple-point contact scenarios. Such a generalization is obtained by an analysis of energy absorption and restitution during impact, using a decomposition technique, which exactly decouples the kinetic energy associated with the normal and tangential directions of the contact pairs. The main advantages of the new definition and its potential applications are highlighted.
Issue Section:
Research Papers
1.
Johnson
, K.
, 1985, Contact Mechanics
, Cambridge University Press
, Cambridge
.2.
Hu
, B.
, and Schiehlen
, W.
, 2003, “Multi-Time Scale Simulation for Impact Systems: From Wave Propagation to Rigid-Body Motion
,” Arch. Appl. Mech.
, 72
(11-12
), pp. 885
–898
. 0939-15333.
Stewart
, D. E.
, 2000, “Rigid-Body Dynamics With Friction and Impact
,” SIAM Rev.
0036-1445, 42
(1
), pp. 3
–39
.4.
Wang
, Y.
, and Mason
, M. T.
, 1992, “Two Dimensional Rigid-Body Collisions With Friction
,” ASME Trans. J. Appl. Mech.
0021-8936, 59
, pp. 635
–642
.5.
Glocker
, C.
, 2006, An Introduction to Impacts
(Nonsmooth Mechanics of Solids, CISM Courses and Lectures
), Springer-Verlag
, New York
, Vol. 485
, pp. 45
–102
.6.
Aeberhard
, U.
, and Glocker
, C.
, 2005, “Energy Considerations for Excited Perfect Collisions
,” Proceedings of the Fifth EUROMECH Nonlinear Oscillations Conference
, Eindhoven
, pp. 422
–431
.7.
Glocker
, C.
, 2001, “On Frictionless Impact Models in Rigid-Body Systems
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 359
(1789
), pp. 2385
–2404
.8.
Liu
, T.
, and Wang
, W. M. Y.
, 2005, “Computation of Three-Dimensional Rigid-Body Dynamics With Multiple Unilateral Contacts Using Time-Stepping and Gauss–Seidel Methods
,” IEEE. Trans. Autom. Sci. Eng.
, 2
(1
), pp. 19
–31
. 1545-59559.
Johansson
, L.
, 2001, “A Newton Method for Rigid Body Frictional Impact With Multiple Simultaneous Impact Points
,” Comput. Methods Appl. Mech. Eng.
, 191
(3–5
), pp. 239
–254
. 0045-782510.
Trinkle
, J. C.
, Tzitzouris
, J. A.
, and Pang
, J. S.
, 2001, “Dynamic Multi-Rigid-Body Systems With Concurrent Distributed Contacts
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 359
(1789
), pp. 2575
–2593
.11.
Wang
, Y.-T.
, and Kumar
, V.
, 1994, “Simulation of Mechanical Systems With Multiple Frictional Contacts
,” ASME J. Mech. Des.
0161-8458, 116
(2
), pp. 571
–580
.12.
Mason
, M. T.
, and Wang
, Y.
, 1988, “On the Inconsistency of Rigid-Body Frictional Planar Mechanics
,” IEEE International Conference on Robotics and Automation
, Philadelphia
, Vol. 1
, pp. 524
–528
, Paper No. 88120172685.13.
Fremond
, M.
, 1995, “Rigid Bodies Collisions
,” Phys. Lett. A
0375-9601, 204
(1
), pp. 33
–41
.14.
Payr
, M.
, Glocker
, C.
, and Bösch
, C.
, 2005, “Experimental Treatment of Multiple-Contact-Collisions
,” Proceedings of the 5th EUROMECH Nonlinear Oscillations Conference
, Eindhoven
, pp. 422
–431
.15.
Ceanga
, V.
, and Hurmuzlu
, Y.
, 2001, “A New Look to an Old Problem: Newtons Cradle
,” ASME J. Appl. Mech.
0021-8936, 68
(4
), pp. 575
–583
.16.
Pfeiffer
, F.
, and Glocker
, C.
, 1996, Multibody Dynamics With Unilateral Contacts
, Wiley
, New York
.17.
Pfeiffer
, F.
, 1999, “Unilateral Problems of Dynamics
,” Arch. Appl. Mech.
0939-1533, 69
(8
), pp. 503
–527
.18.
Gilardi
, G.
, and Sharf
, I.
, 2002, “Literature Survey of Contact Dynamics Modelling
,” Mech. Mach. Theory
0094-114X, 37
(10
), pp. 1213
–1239
.19.
Modarres Najafabadi
, S. A.
, Kövecses
, J.
, and Angeles
, J.
, 2005, “A Comparative Study of Approaches to Dynamics Modeling of Contact Transitions in Multibody Systems
,” Proceedings of the 2005 ASME International Design Engineering Technical Conferences
, Long Beach, CA
, Sept. 24–28, Vol. 6A
, pp. 505
–514
, Paper No. DETC2005–85418.20.
Glocker
, C.
, and Pfeiffer
, F.
, 1995, “Multiple Impacts With Friction in Rigid Multibody Systems
,” Nonlinear Dyn.
0924-090X, 7
(4
), pp. 471
–497
.21.
De Jalon
, J. G.
, and Bayo
, E.
, 1993, Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge
, Springer-Verlag
, New York
.22.
Heinstein
, M.
, Mello
, F.
, Attaway
, S.
, and Laursen
, T.
, 2000, “Contact-Impact Modelling in Explicit Transient Dynamics
,” Comput. Methods Appl. Mech. Eng.
, 187
, pp. 621
–640
. 0045-782523.
Brach
, R. M.
, 1984, “Friction, Restitution, and Energy Loss in Planar Collisions
,” ASME J. Appl. Mech.
0021-8936, 51
(1
), pp. 164
–170
.24.
Brach
, R. M.
, 1989, “Rigid Body Collisions
,” ASME J. Appl. Mech.
0021-8936, 56
(1
), pp. 133
–138
.25.
Stronge
, W.
, 1991, “Unraveling Paradoxical Theories for Rigid Body Collisions
,” ASME Trans. J. Appl. Mech.
0021-8936, 58
, pp. 1049
–1055
.26.
Stronge
, W. J.
, 2000, Impact Mechanics
, Cambridge University Press
, Cambridge
.27.
Stronge
, W. J.
, 2001, “Generalized Impulse and Momentum Applied to Multibody Impact With Friction
,” Mech. Struct. Mach.
0890-5452, 29
(2
), pp. 239
–260
.28.
Glocker
, C.
, 2004, “Concepts for Modeling Impacts Without Friction
,” Acta Mech.
, 168
(1-2
), pp. 1
–19
. 0001-597029.
Brogliato
, B.
, 1999, Nonsmooth Mechanics: Models, Dynamics and Control
, 2nd ed., Springer
, London
.30.
Kövecses
, J.
, and Piedbœuf
, J.-C.
, 2003, “A Novel Approach for the Dynamic Analysis and Simulation of Constrained Mechanical Systems
,” Proceedings of the 2003 ASME Design Engineering Technical Conferences
, Chicago
, Sept. 2–6, Vol. 5A
, pp. 143
–152
, Paper No. Detc2003/Vib–48318.31.
Blajer
, W.
, 1997, “A Geometric Unification of Constrained System Dynamics
,” Multibody Syst. Dyn.
1384-5640, 1
(1
), pp. 3
–21
.32.
Kövecses
, J.
, 2008, “Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Parts I and II
,” ASME J. Appl. Mech.
0021-8936, to be published.33.
Glocker
, C.
, 2001, Set-Valued Force Laws: Dynamics of Non-Smooth Systems
(Lecture Notes in Applied Mechanics
), Springer-Verlag
, Berlin
, Vol. 1
.34.
Moreau
, J. J.
, 1988, Unilateral Contact and Dry Friction in Finite Freedom Dynamics
(Nonsmooth Mechanics and Applications, Courses and Lectures
) Vol. 302
, pp. 1
–82
.35.
Glocker
, C.
, 2002, “Impacts With Global Dissipation Index at Re-Entrant Corners
,” Solid Mechanics and Its Applications
, Contact Mechanics: Proceedings of the 3rd Contact Mechanics International Symposium
, J.
Martins
and M.
Monteiro Marques
, eds., Kluwer
, Dordrecht
, Vol. 103
, pp. 45
–52
.36.
Glocker
, C.
, 2001, “A Geometric Interpretation of Newtonian Impacts With Global Dissipation Index
,” Cahiers Stephanois de Mathematiques Appliquees Publication de l’Equipe d’Analyse Numérique
, p. 14
.37.
Modarres Najafabadi
, S. A.
, Kövecses
, J.
, and Angeles
, J.
, 2007, “Energy Analysis and Decoupling in Three-Dimensional Impacts of Multibody Systems
,” ASME J. Appl. Mech.
0021-8936, 74
(5
), pp. 845
–851
.38.
Baruh
, H.
, 1999, Analytical Dynamics
, McGraw-Hill
, Boston, MA
.39.
Kövecses
, J.
, and Cleghorn
, W. L.
, 2003, “Finite and Impulsive Motion of Constrained Mechanical Systems Via Jourdain’s Principle: Discrete and Hybrid Parameter Models
,” Int. J. Non-Linear Mech.
, 38
(6
), pp. 935
–956
. 0020-746240.
Greenwood
, D. T.
, 2003, Advanced Dynamics
, Cambridge University Press
, Cambridge.
41.
Stoianovici
, D.
, and Hurmuzlu
, Y.
, 1996, “A Critical Study of the Applicability of Rigid-Body Collision Theory
,” ASME J. Appl. Mech.
0021-8936, 63
(2
), pp. 307
–316
.42.
Stronge
, W.
, 2003, “Chain Reaction From Impact on Aggregate of Elasto-Plastic ‘Rigid’ Bodies
,” Int. J. Impact Eng.
, 28
(3
), pp. 291
–302
. 0734-743X43.
Acary
, V.
, and Brogliato
, B.
, 2003, “Concurrent Multiple Impacts Modelling: Case Study of a 3-Ball Chain
,” Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics
, Bathe
, K.
ed., Elsevier
, New York
, pp. 1
–6
.44.
Synge
, J.
, and Schild
, A.
, 1978, Tensor Calculus
, Dover
, New York
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.