In this work, chaotic vibrations of shallow sector-type spherical shells are studied. A sector-type shallow shell is understood as a shell defined by a sector with associated boundary conditions and obtained by cutting a spherical shell for a given angle θk, or it is a sector of a shallow spherical cap associated with the mentioned angle. Both static stability and complex nonlinear dynamics of the mentioned mechanical objects subjected to transversal uniformly distributed sign-changeable load are analyzed, and the so-called vibration charts and scales regarding the chosen control parameters are reported. In particular, scenarios of transition from regular to chaotic dynamics of the mentioned shells are investigated. A novel method to control chaotic dynamics of the studied flexible spherical shells driven by transversal sign-changeable load via synchronized action of the sign-changeable antitorque is proposed and applied. All investigations are carried out within the fields of qualitative theory of differential equations and nonlinear dynamics.

1.
Ross
,
C. T. F.
, 1975, “
Finite Elements for the Vibration of Cones and Cylinders
,”
Int. J. Numer. Methods Eng.
0029-5981,
9
, pp.
833
845
.
2.
Liew
,
K. M.
,
Lim
,
C. W.
, and
Ong
,
L. S.
, 1994, “
Flexural Vibration of Doubly-Tapered Cylindrical Shallow Shells
,”
Int. J. Mech. Sci.
0020-7403,
36
(
6
), pp.
547
565
.
3.
Thompson
,
J. M. T.
, and
Bishop
,
S. R.
, 1994, Non-Linearity and Chaos in Engineering Dynamics,
Wiley
,
New York
.
4.
Nayfeh
,
H.
, and
Mook
,
D. T.
, 1979,
Non-Linear Oscillations
,
Wiley
,
New York
.
5.
Benamar
,
R.
,
Bennouna
,
M. M. K.
, and
White
,
R. G.
, 1994, “
The Effects of Large Vibration Amplitudes on the Mode Shapes and Natural Frequencies of Thin Elastic Structures
,”
J. Sound Vib.
0022-460X,
175
, pp.
377
395
.
6.
Volmir
,
A. S.
, 1972,
Nonlinear Dynamics of Plates and Shells
,
Nauka
,
Moscow
, in Russian.
7.
Bolotin
,
V. V.
, 1964,
The Dynamic Stability of Elastic Systems
,
Holden-Day
,
San Francisco
.
8.
Evensen
,
D. A.
, 1974, “
Non-Linear Vibrations of Circular Cylindrical Shells
,” in
Thin Walled Structures, Theory, Experiment and Design
,
Y. C.
Fung
and
E. E.
Sechler
, eds.,
Englewood Cliffs
,
NJ, Prentice-Hall
, pp.
133
155
.
9.
Leissa
,
A. W.
, 1973, “
Vibration of Shells
,” NASA Report No. SP-288.
10.
Sathyamoorthy
,
M.
, and
Pandalai
,
K. A. V.
, 1972, “
Large Amplitude Vibrations of Certain Deformable Bodies. Part I, Disc, Membranes and Rings
,”
J. Aeronaut. Soc. India
0001-9267,
24
, pp.
409
414
.
11.
Sathyamoorthy
,
M.
, and
Pandalai
,
K. A. V.
, 1973, “
Large Amplitude Vibrations of Certain Deformable Bodies. Part II, Plates and Shells
,”
J. Aeronaut. Soc. India
0001-9267,
25
, pp.
1
10
.
12.
Leissa
,
W.
, 1984, “
Non-Linear Analysis of Plates and Shell Vibrations
,”
Proceedings of the Second International Conference on Recent Advances in Structure Dynamics
, pp.
262
272
.
13.
Paidoussis
,
M. P.
, and
Li
,
G. X.
, 1992, “
Cross-Flow-Induced Chaotic Vibrations of Heat-Exchanger Tubes Impacting on Loose Supports
,”
J. Sound Vib.
0022-460X,
152
(
2
), pp.
305
326
.
14.
Yang
,
X. L.
, and
Sethna
,
P. R.
, 1992, “
Non-Linear Phenomena in Forced Vibrations of a Nearly Square Plate, Antisymmetric Case
,”
J. Sound Vib.
0022-460X,
155
(
3
), pp.
413
441
.
15.
Murphy
,
K. D.
,
Virgin
,
L. N.
, and
Rizzi
,
S. A.
, 1996, “
Characterizing the Dynamic Response of a Thermally Loaded, Acoustically Excited Plate
,”
J. Sound Vib.
0022-460X,
196
(
5
), pp.
635
658
.
16.
Chang
,
S. I.
,
Lee
,
J. M.
,
Bajaj
,
A. K.
, and
Krousgrill
,
C. M.
, 1997, “
Subharmonic Responses in Harmonically Excited Rectangular Plates With One-to-One Internal Resonance
,”
Chaos, Solitons Fractals
0960-0779,
8
(
4
), pp.
479
498
.
17.
Sun
,
Y. X.
, and
Zhang
,
S. Y.
, 2001, “
Chaotic Dynamic Analysis of Viscoelastic Plates
,”
Int. J. Mech. Sci.
0020-7403,
43
(
5
), pp.
1195
1208
.
18.
Cheng
,
C.-J.
, and
Fan
,
X.-J.
, 2001, “
Nonlinear Mathematical Theory of Perforated Viscoelastic Thin Plates With Its Applications
,”
Int. J. Solids Struct.
0020-7683,
38
(
36–37
), pp.
6627
6641
.
19.
Lai
,
H.-Y.
,
Chen
,
C.-K.
, and
Yeh
,
Y.-L.
, 2002, “
Double-Mode Modeling of Chaotic and Bifurcation Dynamics for a Simply Supported Rectangular Plate in Large Deflection
,”
Int. J. Non-Linear Mech.
0020-7462,
37
(
2
), pp.
331
343
.
20.
Sheng
,
D.-F.
, and
Cheng
,
C.-J.
, 2004, “
Dynamical Behaviors of Nonlinear Viscoelastic Thick Plates With Damage
,”
Int. J. Solids Struct.
0020-7683,
41
(
26
), pp.
7287
7308
.
21.
Xiao
,
Y.-G.
,
Fu
,
Y.-M.
, and
Zha
,
X.-D.
, 2008, “
Bifurcation and Chaos of Rectangular Moderately Thick Plates on an Elastic Foundation Subjected to Periodic Load
,”
Chaos, Solitons Fractals
0960-0779,
35
(
3
), pp.
460
465
.
22.
Ribeiro
,
P.
, and
Duarte
,
R. P.
, 2006, “
From Periodic to Chaotic Oscillations in Composite Laminated Plates
,”
Comput. Struct.
0045-7949,
84
(
24–25
), pp.
1629
1639
.
23.
Guo
,
X.
, and
Mei
,
C.
, 2006, “
Application of Aeroelastic Modes on Nonlinear Supersonic Panel Flutter at Elevated Temperatures
,”
Comput. Struct.
0045-7949,
84
(
24–25
), pp.
1619
1628
.
24.
Ribeiro
,
P.
, 2007, “
Thermally Induced Transitions to Chaos in Plate Vibrations
,”
J. Sound Vib.
0022-460X,
299
(
1–2
), pp.
314
330
.
25.
Raouf
,
R. A.
, and
Nayfeh
,
A. H.
, 1990, “
Non-Linear Axisymmetric Response of Closed Spherical Shells to a Radial Harmonic Excitation
,”
Int. J. Non-Linear Mech.
0020-7462,
25
(
5
), pp.
475
492
.
26.
Popov
,
A. A.
,
Thompson
,
J. M. T.
, and
McRobie
,
F. A.
, 2001, “
Chaotic Energy Exchange Through Auto-Parametric Resonance in Cylindrical Shells
,”
J. Sound Vib.
0022-460X,
248
(
3
), pp.
395
411
.
27.
Soliman
,
M. S.
, and
Gonccalves
,
P. B.
, 2003, “
Chaotic Behavior Resulting in Transient and Steady State Instabilities of Pressure-Loaded Shallow Spherical Shells
,”
J. Sound Vib.
0022-460X,
259
(
3
), pp.
497
512
.
28.
Nagai
,
K.
,
Maruyama
,
S.
,
Oya
,
M.
, and
Yamaguchi
,
T.
, 2004, “
Chaotic Oscillations of a Shallow Cylindrical Shell With a Concentrated Mass Under Periodic Excitation
,”
Comput. Struct.
0045-7949,
82
(
31–32
), pp.
2607
2619
.
29.
Amabili
,
M.
, 2005, “
Non-Linear Vibrations of Doubly Curved Shallow Shells
,”
Int. J. Non-Linear Mech.
0020-7462,
40
(
5
), pp.
683
710
.
30.
Pellicano
,
F.
, and
Amabili
,
M.
, 2006, “
Dynamic Instability and Chaos of Empty and Fluid-Filled Circular Cylindrical Shells Under Periodic Axial Loads
,”
J. Sound Vib.
0022-460X,
293
(
1–2
), pp.
227
252
.
31.
Amabili
,
M.
, and
Païdoussis
,
M. P.
, 1998, “
Review of Studies on Geometrically Nonlinear Vibrations and Dynamics of Circular Cylindrical Shells and Panels, With and Without Fluid-Structure Interaction
,”
Appl. Mech. Rev.
0003-6900,
56
, pp.
349
381
.
32.
Awrejcewicz
,
J.
, and
Krysko
,
V. A
, 2003,
Nonclassical Thermoelastic Problems in Nonlinear Dynamics of Shells
,
Springer-Verlag
,
Berlin
.
33.
Awrejcewicz
,
J.
,
Krysko
,
V. A.
, and
Vakakis
,
A. F.
, 2004,
Nonlinear Dynamics of Continuous Elastic Systems
,
Springer-Verlag
,
Berlin
.
34.
Awrejcewicz
,
J.
, and
Krysko
,
V. A.
, 2001, “
Feigenbaum Scenario Exhibited by Thin Plate Dynamics
,”
Nonlinear Dyn.
0924-090X,
24
, pp.
373
398
.
35.
Awrejcewicz
,
J.
,
Krysko
,
V. A.
, and
Krysko
,
A. V.
, 2002, “
Spatio-Temporal Chaos and Solitons Exhibited by von Kármán Model
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
12
(
7
), pp.
1445
1513
.
36.
Awrejcewicz
,
J.
, and
Krysko
,
V. A.
, 2003, “
Nonlinear Coupled Problems in Dynamics of Shells
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
583
607
.
37.
Awrejcewicz
,
J.
, and
Krysko
,
A. V.
, 2003, “
Analysis of Complex Parametric Vibrations of Plates and Shells Using Bubnov-Galerkin Approach
,”
Arch. Appl. Mech.
0939-1533,
73
, pp.
495
503
.
38.
Krysko
,
V. A.
,
Awrejcewicz
,
J.
, and
Narkaitis
,
G. G.
, 2003, “
Bifurcations of Thin Plate-Strip Excited Transversally and Axially
,”
Nonlinear Dyn.
0924-090X,
32
, pp.
187
209
.
39.
Krysko
,
V. A.
,
Awrejcewicz
,
J.
, and
Bruk
,
V. M.
, 2003, “
On the Solution of a Coupled Thermomechanical Problem for Non-Homogeneous Timoshenko-Type Shells
,”
J. Math. Anal. Appl.
0022-247X,
273
, pp.
409
416
.
40.
Awrejcewicz
,
J.
,
Krysko
,
V. A.
, and
Krysko
,
A. V.
, 2004, “
Complex Parametric Vibration of Flexible Rectangular Plates
,”
Meccanica
0025-6455,
39
, pp.
221
224
.
41.
Krysko
,
V. A.
,
Awrejcewicz
,
J.
, and
Shchekaturova
,
T. V.
, 2005, “
Chaotic Vibrations of Spherical and Conical Axially-Symmetric Shells
,”
Arch. Appl. Mech.
0939-1533,
74
(
5–6
), pp.
338
358
.
42.
Awrejcewicz
,
J.
,
Krysko
,
V. A.
, and
Kravtsova
,
I. V.
, 2006, “
Dynamics and Statics of Flexible Axially-Symmetric Shallow Shells
,”
Math. Probl. Eng.
1024-123X,
8
, pp.
1
25
.
43.
Krysko
,
V. A.
, and
Kravtsova
,
I. V.
, 2004, “
Dynamics and Static of Flexible Axially Symmetric Shells Subjected to Sign-Changeable Load Depending on Sloping and Boundary Conditions
,”
Izv. Vyssh. Uchebn. Zaved., Mashinostroyenie
,
12
, pp.
3
14
, in Russian.
44.
Awrejcewicz
,
J.
,
Krysko
,
V. A.
, and
Shchekaturova
,
T. V.
, 2005, “
Transitions From Regular to Chaotic Vibrations of Spherical and Conical Axially-Symmetric Shells
,”
Int. J. Struct. Stab. Dyn.
0219-4554,
5
(
3
), pp.
359
385
.
45.
Donnell
,
L. H.
, 1938, “
A Discussion of Thin Shell Theory
,”
Proceedings of the Fifth International Congress on Applied Mechanics
.
46.
Mushtari
,
K. M.
, 1938, “
Certain Generalizations of the Theory of Thin Shells
,”
Izv. Fiz. Mat. Ob-va. Pri Kaz. Un-te.
,
11
(
8
), pp.
28
56
, in Russian.
47.
Love
,
E. H.
, 1888, “
The Small Free Vibrations and Deformations of a Thin Elastic Shell
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
179
, pp.
491
549
.
48.
Timoshenko
,
S.
, 1959,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
49.
Reissner
,
E.
, 1941, “
A New Derivation of the Equations for the Deformation of Elastic Shells
,”
Am. J. Math.
0002-9327,
63
(
1
), pp.
177
184
.
50.
Naghdi
,
P. M.
, and
Berry
,
J. G.
, 1964, “
On the Equations of Motion of Cylindrical Shell
,”
J. Appl. Mech.
0021-8936,
21
, pp.
160
166
.
51.
Vlasov
,
V. Z.
, 1964, “
General Theory of Shells and Its Application in Engineering
,” NASA TT F-99, Russian edition in 1949, NASA, Washington, DC, English translation.
52.
Sanders
,
J. L.
, 1959, “
An Improved First Approximation Theory for Thin Shells
,” NASA Report No. 24.
53.
Byrne
,
R.
, 1944, “
Theory of Small Deformations of a Thin Elastic Shell
,” Seminar Reports in Mathematics.
54.
Flügge
,
W.
, 1934,
Statik und Dynamic der Schalen
,
Springer, Berlin
.
55.
Goldenveizer
,
L.
, 1968, “
Method for Justifying and Refining the Theory of Shells
,”
J. Appl. Math. Mech.
0021-8928,
32
, pp.
704
718
.
56.
Lur’ye
,
A. I.
, 1940, “
General Theory of Elastic Shells
,”
Prikl. Mat. Mekh.
0032-8235,
4
, pp.
7
34
.
57.
Novozhilov
,
V. V.
, 1964,
The Theory of Thin Elastic Shells
,
Noordhoff
,
Groningen
.
58.
Valishvili
,
N. V.
, 1976,
Methods of Numerical Computation of Axially Symmetric Shells
,
Mashinostroyenie
,
Moscow
, in Russian.
59.
Fletcher
,
C. A. G.
, 1984,
Computational Galerkin Methods
,
Springer
,
New York
.
60.
Fedosiev
,
V. I.
, 1963, “
Application of Step-Type Method to Analysis of Stability of a Compressed Rod
,”
Prikl. Mat. Mekh.
0032-8235,
27
(
5
), pp.
833
841
.
61.
Krysko
,
V. A.
,
Guba
,
G. M.
, and
Fomin
,
V. G.
, 1986, “
Dynamics of a Shallow Spherical Shell Subjected to Heat Impact
,”
Prikl. Mat. Mekh.
0032-8235,
22
(
5
), pp.
21
27
.
62.
Landau
,
L. D.
, 1944, “
On the Problem of Turbulence
,”
Dokl. Akad. Nauk SSSR
0002-3264,
44
(
8
), pp.
339
349
.
63.
Ruelle
,
D.
, and
Takens
,
F.
, 1971, “
On the Nature of Turbulence
,”
Commun. Math. Phys.
0010-3616,
20
, pp.
167
192
.
64.
Feigenbaum
,
M. J.
, 1979, “
The Universal Metric Properties of Nonlinear Transformations
,”
J. Stat. Phys.
0022-4715,
21
(
6
), pp.
669
706
.
65.
Pomeau
,
Y.
, and
Manneville
,
P.
, 1980, “
Intermittent Transition to Turbulence in Dissipative Dynamical Systems
,”
Commun. Math. Phys.
0010-3616,
74
(
2
), pp.
189
197
.
66.
Smale
,
S.
, 1962, “
Dynamical Systems and Turbulence
,”
Lect. Notes Math.
0075-8434,
615
, pp.
365
381
.
67.
Mandelbrot
,
B. B.
, 1982,
The Fractal Geometry of Nature
,
Freeman
,
San Francisco
.
68.
Awrejcewicz
,
J.
,
Krysko
,
V. A.
, and
Kravtsova
,
I. V.
, 2003, “
Stochastic Vibrations of Flexible Flat Axisymmetric Shells Exposed in Homogeneous Loading
,”
Proceedings of the International Conference “Dynamical Systems-Theory and Applications,”
Lodz, Poland
, pp.
189
197
.
69.
Awrejcewicz
,
J.
,
Krysko
,
V. A.
, and
Krysko
,
A. V.
, 2004, “
On the Economical Solution Method for a System of Linear Algebraic Equations
,”
Math. Probl. Eng.
1024-123X,
4
, pp.
377
410
.
You do not currently have access to this content.