Abstract

This paper investigates the dynamical characteristics and synchronization of a unified chaotic system described by Caputo–Hadamard fractional derivative. The equilibrium solutions of the considered system are first analyzed and confirmed to be unstable. Then, by observing the phase diagram and calculating the largest Lyapunov exponent, we discuss the dynamical behavior of the fractional unified chaotic system in relation to variations in both inherent parameters and fractional order. The result indicates that the dynamic states of the system are influenced by these two parameters. The chaos synchronization of fractional unified chaotic systems is explored using a drive-response synchronization method, wherein two controllers are designed to achieve complete synchronization between the driving and responding systems. Furthermore, this proposed chaos synchronization approach for the fractional unified chaotic system is successfully applied to secure communication. Finally, numerical simulations illustrate how both inherent parameters of the system and fractional order affect synchronization performance.

References

1.
Yu
,
Y. B.
,
Gao
,
Q. M.
,
Zhao
,
X. J.
, and
Ji
,
Y. J.
,
2023
, “
2-D Modeling and Analysis of Time-Domain Electromagnetic Anomalous Diffusion With Space-Fractional Derivative
,”
IEEE Trans. Geosci. Remote Sens.
,
61
, pp.
1
13
.10.1109/TGRS.2023.3241150
2.
Wu
,
C.
,
2021
, “
The Continuous Dependence of Global Solutions to Caputo Fractional Order Systems
,”
J. Integr. Equations Appl.
,
33
(
3
), pp.
371
379
.10.1216/jie.2021.33.371
3.
Maheshwari
,
A.
, and
Vellaisamy
,
P.
,
2016
, “
On the Long-Range Dependence of Fractional Poisson and Negative Binomial Processes
,”
J. Appl. Probab.
,
53
(
4
), pp.
989
1000
.10.1017/jpr.2016.59
4.
Yang
,
J. H.
,
Sanjuán
,
M. A. F.
,
Liu
,
H. G.
,
Cheng
,
G.
, and
Stojanovic
,
V.
,
2015
, “
Bifurcation Transition and Nonlinear Response in a Fractional-Order System
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061017
.10.1115/1.4029512
5.
Wu
,
F.
,
Gao
,
R. B.
,
Liu
,
J.
, and
Li
,
C. B.
,
2020
, “
New Fractional Variable-Order Creep Model With Short Memory
,”
Appl. Math. Comput
,
380
, p.
125278
.10.1016/j.amc.2020.125278
6.
Hu
,
W.
,
Ding
,
D. W.
, and
Wang
,
N.
,
2017
, “
Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System
,”
ASME J. Comput. Nonlinear Dyn
,
12
(
4
), p.
041003
.10.1115/1.4035412
7.
Lomnitz
,
C.
,
1956
, “
Creep Measurements in Igneous Rocks
,”
J. Geol.
,
64
(
5
), pp.
473
479
.10.1086/626379
8.
Garra
,
R.
,
Mainardi
,
F.
, and
Spada
,
G.
,
2017
, “
A Generalization of the Lomnitz Logarithmic Creep Law Via Hadamard Fractional Calculus
,”
Chaos Solitons Fractals
,
102
, pp.
333
338
.10.1016/j.chaos.2017.03.032
9.
Jarad
,
F.
,
Abdeljawad
,
T.
, and
Baleanu
,
D.
,
2012
, “
Caputo-Type Modification of the Hadamard Fractional Derivatives
,”
Adv. Differ. Equation
,
2012
(
1
), p.
142
.10.1186/1687-1847-2012-142
10.
Cai
,
R. Y.
,
Ge
,
F. D.
,
Chen
,
Y. Q.
,
Kou
,
C. H.
, and
College of Information Science and Technology, Donghua University, Shanghai 201620, China
,
2020
, “
Regional Gradient Controllability of Ultra-Slow Diffusions Involving the Hadamard-Caputo Time Fractional Derivative
,” arXiv:1904.06953.
11.
Cai
,
R. Y.
,
Ge
,
F. D.
,
Chen
,
Y. Q.
, and
Kou
,
C. H.
,
2019
, “
Regional Observability for Hadamard-Caputo Time Fractional Distributed Parameter Systems
,”
Appl. Math. Comput.
,
360
, pp.
190
202
.10.1016/j.amc.2019.04.081
12.
Li
,
C. P.
, and
Yin
,
C. T.
,
2021
, “
An Estimate of the Bound of the Lyapunov Exponents for Caputo-Hadamard Fractional Differential System
,”
ASME J. Comput. Nonlinear Dyn
,
16
(
7
), p.
071002
.10.1115/1.4051024
13.
Zheng
,
X. C.
,
2021
, “
Logarithmic Transformation Between (Variable-Order) Caputo and Caputo-Hadamard Fractional Problems and Applications
,”
Appl. Math. Lett.
,
121
, p.
107366
.10.1016/j.aml.2021.107366
14.
Cai
,
M.
,
Karniadakis
,
G. E.
, and
Li
,
C. P.
,
2022
, “
Fractional SEIR Model and Data-Driven Predictions of COVID-19 Dynamics of Omicron Variant
,”
Chaos
,
32
(
7
), p.
071101
.10.1063/5.0099450
15.
Idrees
,
S.
, and
Saeed
,
U.
,
2022
, “
Generalized Sine-Cosine Wavelet Method for Caputo-Hadamard Fractional Differential Equations
,”
Math. Method Appl. Sci.
,
45
(
16
), pp.
9602
9621
.10.1002/mma.8325
16.
Arfaoui
,
H.
, and
Ben Makhlouf
,
A.
,
2023
, “
Some Results for a Class of Delayed Fractional Partial Differential Equations With Caputo-Hadamard Derivative
,”
Math. Method Appl. Sci.
,
46
(
9
), pp.
9954
9965
.10.1002/mma.9096
17.
Liu
,
J. K.
,
Wei
,
W.
,
Wang
,
J. B.
, and
Xu
,
W.
,
2023
, “
Limit Behavior of the Solution of Caputo-Hadamard Fractional Stochastic Differential Equations
,”
Appl. Math. Lett.
,
140
, p.
108586
.10.1016/j.aml.2023.108586
18.
Amara
,
A.
,
Etemad
,
S.
, and
Rezapour
,
S.
,
2020
, “
Topological Degree Theory and Caputo-Hadamard Fractional Boundary Value Problems
,”
Adv. Diff. Equations
,
2020
(
1
), p.
369
.10.1186/s13662-020-02833-4
19.
,
J. H.
,
Chen
,
G. R.
,
Cheng
,
D. Z.
, and
Celikovsky
,
S.
,
2002
, “
Bridge the Gap Between the Lorenz System and the Chen System
,”
Int. J. Bifurcation Chaos
,
12
(
12
), pp.
2917
2926
.10.1142/S021812740200631X
20.
Xie
,
Y. Y.
,
Cai
,
W. L.
, and
Wang
,
J.
,
2024
, “
Stability and Synchronization of a Fractional-Order Unified System With Complex Variables
,”
Discrete Dyn. Nat. Soc.
,
2024
(
1
), p.
2728661
.10.1155/2024/2728661
21.
Wu
,
Z. Q.
,
Wu
,
G. C.
, and
Zhu
,
W.
,
2024
, “
Neural Network Method for Parameter Estimation of Fractional Discrete-Time Unified Systems
,”
Fractals
,
32
(
1
), pp.
1
8
.10.1142/S0218348X2450004X
22.
Grzybowski
,
J.
,
Rafikov
,
M.
, and
Balthazar
,
J. M.
,
2009
, “
Synchronization of the Unified Chaotic System and Application in Secure Communication
,”
Commun. Nonlinear Sci.
,
14
(
6
), pp.
2793
2806
.10.1016/j.cnsns.2008.09.028
23.
Smaoui
,
N.
,
Karouma
,
A.
, and
Zribi
,
M.
,
2011
, “
Secure Communications Based on the Synchronization of the Hyperchaotic Chen and the Unified Chaotic Systems
,”
Commun. Nonlinear Sci.
,
16
(
8
), pp.
3279
3293
.10.1016/j.cnsns.2010.10.023
24.
Pecora
,
L. M.
,
Carroll
,
T. L.
,
Johnson
,
G. A.
,
Mar
,
D. J.
, and
Heagy
,
J. F.
,
1997
, “
Fundamentals of Synchronization in Chaotic Systems, Concepts, and Applications
,”
Chaos
,
7
(
4
), pp.
520
543
.10.1063/1.166278
25.
Fu
,
H.
, and
Kao
,
Y. G.
,
2023
, “
Synchronization of Uncertain General Fractional Unified Chaotic Systems Via Finite-Time Adaptive Sliding Mode Control
,”
Chaos
,
33
(
4
), p.
043136
.10.1063/5.0130366
26.
Liang
,
H. T.
,
Wang
,
Z.
,
Yue
,
Z. M.
, and
Lu
,
R. H.
,
2012
, “
Generalized Synchronization and Control for Incommensurate Fractional Unified Chaotic System and Applications in Secure Communication
,”
Kybernetika
,
48
(
2
), pp.
190
205
.http://eudml.org/doc/246442
27.
,
J. H.
,
Chen
,
G. R.
, and
Zhang
,
S. C.
,
2002
, “
Dynamical Analysis of a New Chaotic Attractor
,”
Int. J. Bifurcation Chaos
,
12
(
5
), pp.
1001
1015
.10.1142/S0218127402004851
28.
Fan
,
E. Y.
,
Li
,
C. P.
, and
Li
,
Z. Q.
,
2022
, “
Numerical Approaches to Caputo-Hadamard Fractional Derivatives With Applications to Long-Term Integration of Fractional Differential Systems
,”
Commun. Nonlinear Sci. Numer. Simul
,
106
, p.
106096
.10.1016/j.cnsns.2021.106096
29.
Li
,
C. P.
,
Li
,
Z. Q.
, and
Wang
,
Z.
,
2020
, “
Mathematical Analysis and the Local Discontinuous Galerkin Method for Caputo-Hadamard Fractional Partial Differential Equation
,”
J. Sci. Comput.
,
85
(
2
), pp.
1
27
.10.1007/s10915-020-01353-3
You do not currently have access to this content.