Abstract

In this paper, a novel three-dimensional space-scroll chaotic attractor is constructed by introducing piece-wise linear memristors into a three-neurons-based Hopfield neural network to simulate the electromagnetic influence on neural dynamics. The dynamical behaviors of the novel memristive Hopfield neural network are discussed by means of numerical methods including the Lyapunov exponent spectrum, bifurcation diagrams, phase plots and dynamic maps. Furthermore, we also investigated different neurons subject to the memristive electromagnetic influence, where the two-dimensional grid-scroll chaotic attractors can be generated by one neuron subjects to the electromagnetic influence and three-dimensional space-scroll chaotic attractors can be generated by all of the neurons subject to the memristive electromagnetic influence. Moreover, we present a three-dimensional space-scroll scroll attractor-based chaotic mobile robot system. Superiority of the proposed space-scroll-based chaotic mobile robot system compared to existing methods has been demonstrated through numerical simulations.

References

1.
Hopfield
,
J. J.
,
1982
, “
Neural Networks and Physical Systems With Emergent Collective Computational Abilities
,”
Proc. Nat. Acad. Sci.
,
79
(
8
), pp.
2554
2558
.10.1073/pnas.79.8.2554
2.
Chua
,
L.
,
1971
, “
Memristor-the Missing Circuit Element
,”
IEEE Trans. Circuit Theory
,
18
(
5
), pp.
507
519
.10.1109/TCT.1971.1083337
3.
Luo
,
H.
,
Ding
,
D.
,
Yang
,
Z.
, and
Xiao
,
H.
,
2022
, “
Coexisting Behaviors of Chaotic System With Tri-Stable Locally Active Memristor and Its Application in Color Image Encryption
,”
Eur. Phys. J. Plus
,
137
(
5
), p. 607.10.1140/epjp/s13360-022-02814-4
4.
Lu
,
Y.-M.
,
Wang
,
C.-H.
,
Deng
,
Q.-L.
, and
Xu
,
C.
,
2022
, “
The Dynamics of a Memristor-Based Rulkov Neuron With Fractional-Order Difference
,”
Chin. Phys. B
,
31
(
6
), p.
060502
.10.1088/1674-1056/ac539a
5.
Ma
,
X.
,
Li
,
C.
,
Li
,
Y.
,
Bi
,
L.
, and
Qi
,
Z.
,
2022
, “
Rotation Control of an HR Neuron With a Locally Active Memristor
,”
Eur. Phys. J. Plus
,
137
(
5
), p.
542
.10.1140/epjp/s13360-022-02761-0
6.
Hu
,
Z.
, and
Wang
,
C.
,
2024
, “
Hopfield Neural Network With Multi-Scroll Attractors and Application in Image Encryption
,”
Multimedia Tools Appl.
,
83
(
1
), pp.
97
117
.10.1007/s11042-023-15670-w
7.
Ma
,
T.
,
Mou
,
J.
,
Yan
,
H.
, and
Cao
,
Y.
,
2022
, “
A New Class of Hopfield Neural Network With Double Memristive Synapses and Its Dsp Implementation
,”
Eur. Phys. J. Plus
,
137
(
10
), p. 1135.10.1140/epjp/s13360-022-03353-8
8.
Kong
,
D.
,
Hu
,
S.
,
Wang
,
J.
,
Liu
,
Z.
,
Chen
,
T.
,
Yu
,
Q.
, and
Liu
,
Y.
,
2019
, “
Study of Recall Time of Associative Memory in a Memristive Hopfield Neural Network
,”
IEEE Access
,
7
, pp.
58876
58882
.10.1109/ACCESS.2019.2915271
9.
Hu
,
X.
,
Liu
,
C.
,
Liu
,
L.
,
Ni
,
J.
, and
Yao
,
Y.
,
2018
, “
Chaotic Dynamics in a Neural Network Under Electromagnetic Radiation
,”
Nonlinear Dyn.
,
91
(
3
), pp.
1541
1554
.10.1007/s11071-017-3963-6
10.
Chen
,
C.
,
Chen
,
J.
,
Bao
,
H.
,
Chen
,
M.
, and
Bao
,
B.
,
2019
, “
Coexisting Multi-Stable Patterns in Memristor Synapse-Coupled Hopfield Neural Network With Two Neurons
,”
Nonlinear Dyn.
,
95
(
4
), pp.
3385
3399
.10.1007/s11071-019-04762-8
11.
Lin
,
H.
,
Wang
,
C.
, and
Tan
,
Y.
,
2020
, “
Hidden Extreme Multistability With Hyperchaos and Transient Chaos in a Hopfield Neural Network Affected by Electromagnetic Radiation
,”
Nonlinear Dyn.
,
99
(
3
), pp.
2369
2386
.10.1007/s11071-019-05408-5
12.
Chen
,
C.
,
Min
,
F.
,
Zhang
,
Y.
, and
Bao
,
B.
,
2021
, “
Memristive Electromagnetic Induction Effects on Hopfield Neural Network
,”
Nonlinear Dyn.
,
106
(
3
), pp.
2559
2576
.10.1007/s11071-021-06910-5
13.
Huang
,
L.-L.
,
Zhang
,
Y.
,
Xiang
,
J.-H.
, and
Liu
,
J.
,
2022
, “
Extreme Multistability in a Hopfield Neural Network Based on Two Biological Neuronal Systems
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
69
(
11
), pp.
4568
4572
.10.1109/TCSII.2022.3183340
14.
Lai
,
Q.
,
Wan
,
Z.
,
Zhang
,
H.
, and
Chen
,
G.
,
2023
, “
Design and Analysis of Multiscroll Memristive Hopfield Neural Network With Adjustable Memductance and Application to Image Encryption
,”
IEEE Trans. Neural Networks Learn. Syst.
,
34
(
10
), pp.
7824
7837
.10.1109/TNNLS.2022.3146570
15.
Li
,
R.
,
Dong
,
E.
,
Tong
,
J.
, and
Wang
,
Z.
,
2022
, “
A Novel Multiscroll Memristive Hopfield Neural Network
,”
Int. J. Bifurcation Chaos
,
32
(
9
), p.
2250130
.10.1142/S0218127422501309
16.
Yu
,
F.
,
Kong
,
X.
,
Mokbel
,
A. A. M.
,
Yao
,
W.
, and
Cai
,
S.
,
2023
, “
Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
70
(
1
), pp.
326
330
.10.1109/TCSII.2022.3218468
17.
Lin
,
H.
,
Wang
,
C.
,
Sun
,
Y.
, and
Wang
,
T.
,
2023
, “
Generating n-Scroll Chaotic Attractors From a Memristor-Based Magnetized Hopfield Neural Network
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
70
(
1
), pp.
311
315
.10.1109/TCSII.2022.3212394
18.
Lai
,
Q.
,
Wan
,
Z.
, and
Kuate
,
P. D. K.
,
2023
, “
Generating Grid Multi-Scroll Attractors in Memristive Neural Networks
,”
IEEE Trans. Circuits Syst. I: Regular Papers
,
70
(
3
), pp.
1324
1336
.10.1109/TCSI.2022.3228566
19.
Nakamura
,
Y.
, and
Sekiguchi
,
A.
,
2001
, “
The Chaotic Mobile Robot
,”
IEEE Trans. Rob. Autom.
,
17
(
6
), pp.
898
904
.10.1109/70.976022
20.
Li
,
C.-h.
,
Song
,
Y.
,
Wang
,
F.-y.
,
Wang
,
Z.-Q.
, and
Li
,
Y.-B.
,
2017
, “
A Chaotic Coverage Path Planner for the Mobile Robot Based on the Chebyshev Map for Special Missions
,”
Front. Inf. Technol. Electron. Eng.
,
18
(
9
), pp.
1305
1319
.10.1631/FITEE.1601253
21.
Nasr
,
S.
,
Mekki
,
H.
, and
Bouallegue
,
K.
,
2019
, “
A Multi-Scroll Chaotic System for a Higher Coverage Path Planning of a Mobile Robot Using Flatness Controller
,”
Chaos, Solitons Fractals
,
118
, pp.
366
375
.10.1016/j.chaos.2018.12.002
22.
Sridharan
,
K.
, and
Ahmadabadi
,
Z. N.
,
2020
, “
A Multi-System Chaotic Path Planner for Fast and Unpredictable Online Coverage of Terrains
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
5268
5275
.10.1109/LRA.2020.3007471
23.
Chua
,
L.
,
2019
, “
Everything You Wish to Know About Memristors but Are Afraid to Ask
,”
Radioengineering
, 24(2), , pp.
319
368
.10.13164/re.2015.0319
24.
Chen
,
Y.
,
Lai
,
Q.
,
Zhang
,
Y.
,
Erkan
,
U.
, and
Toktas
,
A.
,
2024
, “
Complex Dynamics of a New Multiscroll Memristive Neural Network
,”
Nonlinear Dyn.
,
112
(
10
), pp.
8603
8616
.10.1007/s11071-024-09466-2
25.
Bao
,
B.
,
Wang
,
Z.
,
Hua
,
Z.
,
Chen
,
M.
, and
Bao
,
H.
,
2023
, “
Regime Transition and Multi-Scroll Hyperchaos in a Discrete Neuron Model
,”
Nonlinear Dyn.
,
111
(
14
), pp.
13499
13512
.10.1007/s11071-023-08543-2
26.
Hou
,
L.
,
Bao
,
H.
,
Xu
,
Q.
,
Chen
,
M.
, and
Bao
,
B.
,
2021
, “
Coexisting Infinitely Many Nonchaotic Attractors in a Memristive Weight-Based Tabu Learning Neuron
,”
Int. J. Bifurcation Chaos
,
31
(
12
), p.
2150189
.10.1142/S0218127421501893
27.
Cheng
,
G.
,
Wang
,
C.
, and
X
,
C.
,
2020
, “
A Novel Hyper-Chaotic Image Encryption Scheme Based on Quantum Genetic Algorithm and Compressive Sensing
,”
Multimedia Tools Appl.
,
79
(
39–40
), pp.
29243
29263
.10.1007/s11042-020-09542-w
28.
Liu
,
Y.
,
Tong
,
X.
, and
M
,
J.
,
2016
, “
Image Encryption Algorithm Based on Hyper-Chaotic System and Dynamic S-Box
,”
Multimedia Tools Appl.
,
75
(
13
), pp.
7739
7759
.10.1007/s11042-015-2691-5
29.
Li
,
Y.
,
Li
,
Z.
,
Ma
,
M.
, and
Wang
,
M.
,
2020
, “
Generation of Grid Multi-Wing Chaotic Attractors and Its Application in Video Secure Communication System
,”
Multimedia Tools Appl.
,
79
(
39–40
), pp.
29161
29177
.10.1007/s11042-020-09448-7
30.
Pimentel-Romero
,
C.
,
Muñoz-Pacheco
,
J. M.
,
Felix-Beltran
,
O.
,
Gomez-Pavon
,
L.
, and
Volos
,
C. K.
,
2017
, “
Chaotic Planning Paths Generators by Using Performance Surfaces
,”
Fractional Order Control and Synchronization of Chaotic Systems
, Springer, Cham, Switzerland, pp.
805
832
.10.1007/978-3-319-50249-6
31.
Petavratzis
,
E. K.
,
Volos
,
C. K.
,
Stouboulos
,
IN.
,
Nistazakis
,
H. E.
,
Kyritsi
,
K. G.
, and
Valavanis
,
K. P.
,
2019
, “
Coverage Performance of a Chaotic Mobile Robot Using an Inverse Pheromone Model
,”
8th International Conference on Modern Circuits and Systems Technologies
(
MOCAST
), Thessaloniki, Greece, May 13–15, pp. 1–
4
.10.1109/MOCAST.2019.8741542
32.
Petavratzis
,
E.
,
Moysis
,
L.
,
Volos
,
C.
,
Stouboulos
,
I.
,
Nistazakis
,
H.
, and
Valavanis
,
K.
,
2021
, “
A Chaotic Path Planning Generator Enhanced by a Memory Technique
,”
Rob. Auton. Syst.
,
143
, p.
103826
.10.1016/j.robot.2021.103826
33.
Li
,
C.
,
Liu
,
C.
,
Song
,
Y.
, and
Liang
,
Z.
,
2023
, “
Parameter Value Selection Strategy for Complete Coverage Path Planning Based on the lü System to Perform Specific Types of Missions
,”
Front. Inf. Technol. Electron. Eng.
,
24
(
2
), pp.
231
244
.10.1631/FITEE.2200211
You do not currently have access to this content.