Abstract

Some possible definitions of fractional derivative operators with nonsingular analytic kernels have been introduced. In this paper, we propose a new generalized class of fractional derivative operators of Caputo-type with nonsingular analytic kernels which includes some known operators as special cases. We demonstrate a relationship between the fractional derivative operators of the proposed generalized class and the Riemann–Liouville (RL) fractional integral operator. We also, using this relationship, introduce the corresponding fractional integral operators. Then, mainly, we provide extensions to the fractional derivative operators of the proposed generalized class that display integrable singular kernels. The extended fractional derivative operators provide useful insights regarding the modeling issue so that the initialization problem can be overcome. Finally, we discuss some basic properties of the proposed operators that are expected to be widely used in fractional calculus.

References

1.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
2.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
3.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific Publishing Company
,
Singapore
.
4.
Samko
,
G.
,
Kilbas
,
A.
, and
Marichev
,
O.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
,
Amsterdam, The Netherlands
.
5.
Kilbas
,
A.
,
Srivastava
,
H.
, and
Trujillo
,
J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
, Amsterdam,
The Netherlands
.
6.
Herrmann
,
R.
,
2014
,
Fractional Calculus: An Introduction for Physicists
,
World Scientific
,
Singapore
.
7.
West
,
B. J.
,
2015
,
Fractional Calculus View of Complexity: Tomorrow's Science
,
Taylor and Francis
, London,
UK
.
8.
Sun
,
H. G.
,
Zhang
,
Y.
,
Baleanu
,
D.
,
Chen
,
W.
, and
Chen
,
Y. Q.
,
2018
, “
A New Collection of Real World Applications of Fractional Calculus in Science and Engineering
,”
Commun. Nonlinear Sci. Numer. Simul.
,
64
, pp.
213
231
.10.1016/j.cnsns.2018.04.019
9.
Polyanin
,
A. D.
, and
Manzhirov
,
A. V.
,
2008
,
Handbook of Integral Equations
, 2nd ed.,
Chapman and Hall/CRC
,
New York
.
10.
Caputo
,
M.
, and
Fabrizio
,
F.
,
2015
, “
A New Definition of Fractional Derivative Without Singular Kernel
,”
Prog. Fract. Differ. Appl.
,
1
, pp.
73
85
.10.12785/pfda/010201
11.
Saad
,
K.
,
Atangana
,
A.
, and
Baleanu
,
D.
,
2018
, “
New Fractional Derivatives With Non-Singular Kernel Applied to the Burgers Equation
,”
Chaos
,
28
(
6
), p.
063109
.10.1063/1.5026284
12.
Baleanu
,
D.
, and
Shiri
,
B.
,
2018
, “
Collocation Methods for Fractional Differential Equations Involving Non-Singular Kernel
,”
Chaos, Solitons Fractals
,
116
, pp.
136
145
.10.1016/j.chaos.2018.09.020
13.
Saad
,
K.
,
2020
, “
New Fractional Derivative With Non-Singular Kernel for Deriving Legendre Spectral Collocation Method
,”
Alexandria Eng. J.
,
59
(
4
), pp.
1909
1917
.10.1016/j.aej.2019.11.017
14.
Losada
,
J.
, and
Nieto
,
J.
,
2021
, “
Fractional Integral Associated to Fractional Derivatives With Nonsingular Kernels
,”
Prog. Fract. Differ. Appl.
,
7
(
3
), pp.
137
143
.10.18576/pfda/070301
15.
Atangana
,
A.
, and
Baleanu
,
D.
,
2016
, “
New Fractional Derivatives With Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model
,”
Therm. Sci.
,
20
(
2
), pp.
763
769
.10.2298/TSCI160111018A
16.
Odibat
,
Z.
,
2024
, “
Numerical Solutions of Linear Time-Fractional Advection-Diffusion Equations With Modified Mittag-Leffler Operator in a Bounded Domain
,”
Phys. Scr.
,
99
(
1
), p.
015205
.10.1088/1402-4896/ad0fd0
17.
Odibat
,
Z.
,
2024
, “
Numerical Simulation of Fractional-Order Duffing System With Extended Mittag-Leffler Derivatives
,”
Phys. Scr.
,
99
(
7
), p.
075217
.10.1088/1402-4896/ad505c
18.
Odibat
,
Z.
, and
Baleanu
,
D.
,
2024
, “
Numerical Simulation of Nonlinear Fractional Delay Differential Equations With Mittag-Leffler Kernels
,”
Appl. Numer. Math.
,
201
, pp.
550
560
.10.1016/j.apnum.2024.04.006
19.
Jarad
,
F.
,
Abdeljawad
,
T.
, and
Hammouch
,
Z.
,
2018
, “
On a Class of Ordinary Differential Equations in the Frame of Atangana-Baleanu Fractional Derivative
,”
Chaos, Solitons Fractals
,
117
, pp.
16
20
.10.1016/j.chaos.2018.10.006
20.
Atangana
,
A.
,
2018
, “
On the New Fractional Derivative and Application to Nonlinear Fisher's Reaction-Diffusion Equation
,”
Appl. Math. Comput.
,
273
, pp.
948
956
.10.1016/j.amc.2015.10.021
21.
Baleanu
,
D.
, and
Fernandez
,
A.
,
2018
, “
On Some New Properties of Fractional Derivatives With Mittag-Leffler Kernel
,”
Commun. Nonlinear Sci. Numer. Simul.
,
59
, pp.
444
462
.10.1016/j.cnsns.2017.12.003
22.
Atangana
,
A.
, and
Koca
,
I.
,
2016
, “
Chaos in a Simple Nonlinear System With Atangana-Baleanu Derivatives With Fractional Order
,”
Chaos, Solitons Fractals
,
89
, pp.
447
454
.10.1016/j.chaos.2016.02.012
23.
Syam
,
M. I.
, and
Al-Refai
,
M.
,
2019
, “
Fractional Differential Equations With Atangana-Baleanu Fractional Derivative: Analysis and Applications
,”
Chaos, Solitons Fractals: X
,
2
, p.
100013
.10.1016/j.csfx.2019.100013
24.
Odibat
,
Z.
, and
Baleanu
,
D.
,
2023
, “
A New Fractional Derivative Operator With Generalized Cardinal Sine Kernel: Numerical Simulation
,”
Math. Comput. Simul.
,
212
, pp.
224
233
.10.1016/j.matcom.2023.04.033
25.
Odibat
,
Z.
,
2021
, “
A Universal Predictor-Corrector Algorithm for Numerical Simulation of Generalized Fractional Differential Equations
,”
Nonlinear Dyn.
,
105
(
3
), pp.
2363
2374
.10.1007/s11071-021-06670-2
26.
Teodoro
,
G. S.
,
Tenreiro Machado
,
J. A.
, and
de Oliveira
,
E. C.
,
2019
, “
A Review of Definitions of Fractional Derivatives and Other Operators
,”
J. Comput. Phys.
,
388
, pp.
195
208
.10.1016/j.jcp.2019.03.008
27.
Yépez-Martínez
,
H.
, and
Gómez-Aguilar
,
J. F.
,
2019
, “
A New Modified Definition of Caputo-Fabrizio Fractional-Order Derivative and Their Applications to the Multi Step Homotopy Analysis Method (MHAM)
,”
J. Comput. Appl. Math.
,
346
, pp.
247
260
.10.1016/j.cam.2018.07.023
28.
Odibat
,
Z.
,
2024
, “
On a Fractional Derivative Operator With a Singular Kernel: Definition, Properties and Numerical Simulation
,”
Phys. Scr.
,
99
(
7
), p.
075278
.10.1088/1402-4896/ad588c
29.
Odibat
,
Z.
, and
Baleanu
,
D.
,
2021
, “
On a New Modification of the Erdélyi-Kober Fractional Derivative
,”
Fractal Fract.
,
5
(
3
), p.
121
.10.3390/fractalfract5030121
30.
Odibat
,
Z.
, and
Baleanu
,
D.
,
2022
, “
Nonlinear Dynamics and Chaos in Fractional Differential Equations With a New Generalized Caputo Fractional Derivative
,”
Chin. J. Phys.
,
77
, pp.
1003
1014
.10.1016/j.cjph.2021.08.018
31.
Liu
,
J. G.
,
Yang
,
X. J.
,
Feng
,
Y. Y.
, and
Cui
,
P.
,
2020
, “
New Fractional Derivative With Sigmoid Function as the Kernel and Its Models
,”
Chin. J. Phys.
,
68
, pp.
533
541
.10.1016/j.cjph.2020.10.011
32.
Fernandez
,
A.
, and
Al-Refai
,
M.
,
2023
, “
A Rigorous Analysis of Integro-Differential Operators With Non-Singular Kernels
,”
Fractal Fract.
,
7
(
3
), p.
213
.10.3390/fractalfract7030213
33.
Odibat
,
Z.
,
2024
, “
A New Fractional Derivative Operator With a Generalized Exponential Kernel
,”
Nonlinear Dyn.
,
112
(
17
), pp.
15219
15230
.10.1007/s11071-024-09798-z
34.
Stein
,
E. M.
, and
Weiss
,
G.
,
1971
,
Introduction to Fourier Analysis on Euclidean Spaces
,
Princeton University Press
,
Princeton, NJ
.
35.
Fernandez
,
A.
,
Özarslan
,
M.
, and
Baleanu
,
D.
,
2019
, “
On Fractional Calculus With General Analytic Kernels
,”
Appl. Math. Comput.
,
354
, pp.
248
265
.10.1016/j.amc.2019.02.045
36.
Abdeljawad
,
T.
, and
Baleanu
,
D.
,
2017
, “
Integration by Parts and Its Applications of a New Nonlocal Derivative With Mittag-Leffler Nonsingular Kernel
,”
J. Nonlinear Sci. Appl.
,
10
(
3
), pp.
1098
1107
.10.22436/jnsa.010.03.20
37.
Al-Refai
,
M.
, and
Baleanu
,
D.
,
2022
, “
On an Extension of the Operator With Mittag-Leffler Kernel
,”
Fractals
,
30
(
5
), p.
2240129
.10.1142/S0218348X22401296
38.
Odibat
,
Z.
, and
Baleanu
,
D.
,
2023
, “
New Solutions of the Fractional Differential Equations With Modified Mittag-Leffler Kernel
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
9
), p.
091007
.10.1115/1.4062747
39.
Montseny
,
G.
,
1998
, “
Diffusive Representation of Pseudo-Differential Time-Operators
,”
ESAIM, Proc.
,
5
, pp.
159
175
.10.1051/proc:1998005
40.
Diethelm
,
K.
,
2023
, “
Diffusive Representations for the Numerical Evaluation of Fractional Integrals
,” International Conference on Fractional Differentiation and Its Applications (
ICFDA
), Ajman, United Arab Emirates, Mar. 14–16, pp.
1
6
.10.1109/ICFDA58234.2023.10153228
You do not currently have access to this content.