Abstract

Pretension is utilized by large space structures such as deployable mesh reflector antennas and flexible solar cell wings to maintain forms and stiffness. Geometric nonlinearity must be taken into account in finite element modal analysis of their preloaded vibration modes. For detailed structural components such as hinges and connectors, modeling simplification using rigid elements is commonly adopted at preliminary design stages when global structural modes are concerned. However, the inadequate geometric stiffness of preloaded rigid elements in certain commercial solvers can lead to unacceptable computation errors, particularly in abnormalities where the zero-energy modes of free–free structures are less than six. This study derives the symmetry geometric stiffness matrix for rigid elements in equilibrium by investigating the incremental relationship between nodal loads and displacements, with full consideration of the incremental behavior of nodal moments. Case studies demonstrate that supplementing this matrix can restore all the zero-energy modes, significantly enhancing the validity of the modal analysis results. Moreover, the stiffening effects of the matrix are equivalently established by six elastic spring elements, facilitating the model improvement procedure for the preloaded rigid elements and enabling its integration into existing commercial software to solve complicated engineering problems.

References

1.
Tibert
,
G.
,
2002
, “
Deployable Tensegrity Structures for Space Applications
,”
Ph.D. thesis
,
Royal Institute of Technology
,
Stockholm, Sweden
.http://wwwciv.eng.cam.ac.uk/dsl/publications/TibertDocThesis.pdf
2.
Liu
,
R.
,
Shi
,
C.
,
Guo
,
H.
,
Li
,
B.
,
Tian
,
D.
, and
Deng
,
Z.
,
2020
, “
Review of Space Deployable Antenna Mechanisms
,”
Chin. J. Mech. Eng.
,
56
(
5
), pp.
1
12
.
3.
Chandra
,
M.
,
Kumar
,
S.
,
Chattopadhyaya
,
S.
,
Chatterjee
,
S.
, and
Kumar
,
P.
,
2021
, “
A Review on Developments of Deployable Membrane-Based Reflector Antennas
,”
Adv. Space Res.
,
68
(
9
), pp.
3749
3764
.10.1016/j.asr.2021.06.051
4.
Ma
,
X.
,
Li
,
T.
,
Ma
,
J.
,
Wang
,
Z.
,
Shi
,
C.
,
Zheng
,
S.
,
Cui
,
Q.
,
Li
,
X.
,
Liu
,
F.
,
Guo
,
H.
,
Liu
,
L.
,
Wang
,
Z.
, and
Li
,
Y.
,
2022
, “
Recent Advances in Space-Deployable Structures in China
,”
Engineering
,
17
, pp.
207
219
.10.1016/j.eng.2022.04.013
5.
Li
,
P.
,
Liu
,
C.
,
Tian
,
Q.
,
Hu
,
H.
, and
Song
,
Y.
,
2016
, “
Dynamics of a Deployable Mesh Reflector of Satellite Antenna: Form-Finding and Modal Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041017
.10.1115/1.4033440
6.
Wei
,
J.
,
Ma
,
R.
,
Liu
,
Y.
,
Yu
,
J.
,
Eriksson
,
A.
, and
Tan
,
H.
,
2018
, “
Modal Analysis and Identification of Deployable Membrane Structures
,”
Acta Astronaut.
,
152
, pp.
811
822
.10.1016/j.actaastro.2018.09.024
7.
Siriguleng
,
B.
,
Zhang
,
W.
,
Liu
,
T.
, and
Liu
,
Y.
,
2020
, “
Vibration Modal Experiments and Modal Interactions of a Large Space Deployable Antenna With Carbon Fiber Material and Ring-Truss Structure
,”
Eng. Struct.
,
207
, p.
109932
.10.1016/j.engstruct.2019.109932
8.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Cable-Stiffened Pantographic Deployable Structures Part 2: Mesh Reflector
,”
AIAA J.
,
35
(
8
), pp.
1348
1355
.10.2514/2.243
9.
Tan
,
G. E. B.
, and
Pellegrino
,
S.
,
2008
, “
Nonlinear Vibration of Cable-Stiffened Pantographic Deployable Structures
,”
J. Sound Vib.
,
314
(
3–5
), pp.
783
802
.10.1016/j.jsv.2008.01.022
10.
Jin
,
L.
,
Zhang
,
F.
,
Tian
,
D.
,
Wang
,
Q.
, and
Cao
,
Q.
,
2022
, “
Thermal-Structural Analysis of the Support Structure for a Modular Space Deployable Antenna
,”
Int. J. Aerosp. Eng.
,
2022
(
1
), p.
2164485
.10.1155/2022/2164485
11.
Jin
,
L.
,
Li
,
B.
,
Tian
,
D.
,
Wang
,
Q.
, and
Hou
,
Y.
,
2024
, “
Impact Dynamic Response of Large Aperture Space Deployable Antenna Supporting Structures Based on a Dual-Scale Model
,”
Thin-Walled Struct.
,
195
, p.
111432
.10.1016/j.tws.2023.111432
12.
Lu
,
J.
,
Qian
,
J.
,
Tian
,
D.
,
Zhang
,
F.
,
Sun
,
D.
,
Yue
,
X.
, and
Fan
,
X.
,
2021
, “
Dynamic Response Analysis of Large Aperture Space Deployable Antenna Structure Under Impact Load
,” 2021 IEEE 4th International Conference on Electronics Technology (
ICET
), Chengdu, China, May 7–10, pp.
677
681
.10.1109/ICET51757.2021.9451057
13.
Shephard
,
M. S.
,
1984
, “
Linear Multipoint Constraints Applied Via Transformation as Part of a Direct Stiffness Assembly Process
,”
Int. J. Numer. Methods Eng.
,
20
(
11
), pp.
2107
2112
.10.1002/nme.1620201112
14.
McGuire
,
W.
,
Gallagher
,
R. H.
, and
Ziemian
,
R. D.
,
2000
,
Matrix Structural Analysis
,
Bucknell Digital Commons
,
Lewisburg, PA
.
15.
De Borst
,
R.
,
Crisfield
,
M. A.
,
Remmers
,
J. J.
, and
Verhoosel
,
C. V.
,
2012
,
Nonlinear Finite Element Analysis of Solids and Structures
,
Wiley
,
Chichester, UK
.
16.
Yang
,
Y. B.
,
Yau
,
J. D.
, and
Leu
,
L. J.
,
2003
, “
Recent Developments in Geometrically Nonlinear and Postbuckling Analysis of Framed Structures
,”
ASME Appl. Mech. Rev.
,
56
(
4
), pp.
431
449
.10.1115/1.1578498
17.
Belytschko
,
T.
,
Liu
,
W. K.
,
Moran
,
B.
, and
Elkhodary
,
K.
,
2014
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
Chichester, UK
.
18.
Loh
,
L.
,
1996
, “
Modeling of Prestressed Solar Arrays in Structural Dynamics
,”
AIAA
Paper No. 96-1239.10.2514/6.96-1239
19.
Bosela
,
P. A.
,
Fertis
,
D.
, and
Shaker
,
F.
,
1992
, “
Grounding of Space Structures
,”
Comput. Struct.
,
45
(
1
), pp.
143
153
.10.1016/0045-7949(92)90351-Y
20.
Fransen
,
S.
,
Kreis
,
A.
, and
Klein
,
M.
,
2005
, “
Pendulum Mode Control of Free-Free Launcher Structural Models in Gravity Fields
,”
J. Spacecr. Rockets
,
42
(
6
), pp.
1109
1121
.10.2514/1.11376
21.
Alipour
,
K.
,
Zarafshan
,
P.
, and
Ebrahimi
,
A.
,
2016
, “
Dynamics Modeling and Attitude Control of a Flexible Space System With Active Stabilizers
,”
Nonlinear Dyn.
,
84
(
4
), pp.
2535
2545
.10.1007/s11071-016-2663-y
22.
Nour-Omid
,
B.
, and
Rankin
,
C.
,
1991
, “
Finite Rotation Analysis and Consistent Linearization Using Projectors
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
353
384
.10.1016/0045-7825(91)90248-5
23.
Gal
,
E.
, and
Levy
,
R.
,
2006
, “
Geometrically Nonlinear Analysis of Shell Structures Using a Flat Triangular Shell Finite Element
,”
Arch. Comput. Methods Eng.
,
13
(
3
), pp.
331
388
.10.1007/BF02736397
24.
Yang
,
Y.
,
Lin
,
S.
, and
Chen
,
C.
,
2007
, “
Rigid Body Concept for Geometric Nonlinear Analysis of 3D Frames, Plates and Shells Based on the Updated Lagrangian Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
7
), pp.
1178
1192
.10.1016/j.cma.2006.07.013
25.
Teh
,
L. H.
,
2005
, “
Spatial Rotation Kinematics and Flexural–Torsional Buckling
,”
J. Eng. Mech.
,
131
(
6
), pp.
598
605
.10.1061/(ASCE)0733-9399(2005)131:6(598)
26.
Argyris
,
J. H.
,
Dunne
,
P. C.
, and
Scharpf
,
D. W.
,
1978
, “
On Large Displacement-Small Strain Analysis of Structures With Rotational Degrees of Freedom
,”
Comput. Methods Appl. Mech. Eng.
,
14
(
3
), pp.
401
451
.10.1016/0045-7825(78)90076-2
27.
Argyris
,
J. H.
,
Hilpert
,
O.
,
Malejannakis
,
G. A.
, and
Scharpf
,
D. W.
,
1979
, “
On the Geometrical Stiffness of a Beam in Space—A Consistent VW Approach
,”
Comput. Methods Appl. Mech. Eng.
,
20
(
1
), pp.
105
131
.10.1016/0045-7825(79)90061-6
28.
Yang
,
Y. B.
, and
Kuo
,
S. R.
,
1994
,
Theory and Analysis of Nonlinear Framed Structures
,
Prentice Hall
,
Singapore
.
29.
Yang
,
Y. B.
,
Chou
,
J. H.
, and
Leu
,
L. J.
,
1992
, “
Rigid Body Considerations for Non‐Linear Finite Element Analysis
,”
Int. J. Numer. Methods Eng.
,
33
(
8
), pp.
1597
1610
.10.1002/nme.1620330804
30.
Teh
,
L. H.
, and
Clarke
,
M. J.
,
1998
, “
Co-Rotational and Lagrangian Formulations for Elastic Three-Dimensional Beam Finite Elements
,”
J. Constr. Steel Res.
,
48
(
2–3
), pp.
123
144
.10.1016/S0143-974X(98)00200-4
31.
Teh
,
L. H.
, and
Clarke
,
M. J.
,
1999
, “
Symmetry of Tangent Stiffness Matrices of 3D Elastic Frame
,”
J. Eng. Mech.
,
125
(
2
), pp.
248
251
.10.1061/(ASCE)0733-9399(1999)125:2(248)
32.
Matthies
,
H.
, and
Strang
,
G.
,
1979
, “
The Solution of Nonlinear Finite Element Equations
,”
Int. J. Numer. Methods Eng.
,
14
(
11
), pp.
1613
1626
.10.1002/nme.1620141104
33.
Clough
,
R. W.
, and
Penzien
,
J.
,
1993
,
Dynamics of Structures
,
McGraw-Hill
,
New York
.
34.
Gere
,
J. M.
, and
Goodno
,
B. J.
,
2012
,
Mechanics of Materials
,
Cengage Learning
,
Boston, MA
.
35.
Ziegler
,
H.
,
1977
,
Principles of Structural Stability
,
Birkhäuser, Basel
,
Switzerland
.
36.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.10.1016/0045-7825(86)90079-4
37.
Jendele
,
L.
, and
Červenka
,
J.
,
2009
, “
On the Solution of Multi-Point Constraints–Application to FE Analysis of Reinforced Concrete Structures
,”
Comput. Struct.
,
87
(
15–16
), pp.
970
980
.10.1016/j.compstruc.2008.04.018
38.
Hu
,
Z.
,
Zhang
,
S.
,
Zhang
,
Y.
,
Zhou
,
H.
, and
Li
,
D.
,
2014
, “
An Efficient Preconditioned Krylov Subspace Method for Large-Scale Finite Element Equations With MPC Using Lagrange Multiplier Method
,”
Eng. Comput.
,
31
(
7
), pp.
1169
1197
.10.1108/EC-03-2013-0077
39.
Gattass
,
M.
, and
Abel
,
J. F.
,
1987
, “
Equilibrium Considerations of the Updated Lagrangian Formulation of Beam‐Columns With Natural Concepts
,”
Int. J. Numer. Methods Eng.
,
24
(
11
), pp.
2119
2141
.10.1002/nme.1620241108
40.
Weaver
,
W.
, Jr.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1991
,
Vibration Problems in Engineering
,
Wiley
,
New York
.
41.
Yang
,
D.
,
Zhang
,
Y.
,
Li
,
P.
, and
Du
,
J.
,
2018
, “
Numerical Form-Finding Method for Large Mesh Reflectors With Elastic Rim Trusses
,”
Acta Astronaut.
,
147
, pp.
241
250
.10.1016/j.actaastro.2018.04.007
42.
Liu
,
T.
,
Wang
,
B.
,
Li
,
H.
,
Zhou
,
X.
, and
Zhang
,
L.
,
2021
, “
Parametric Variational Finite Element Method for the Form-Finding of the Cable-Network Antenna
,”
Chin. J. Comput. Mech.
,
38
(
1
), pp.
73
77
10.7511/jslx20190704001.
43.
You
,
G.
,
Yang
,
P.
, and
Zhang
,
J.
,
2016
, “
Pretension Design Method for Cable-Beam Structure
,”
J. Adv. Mech. Des., Syst., Manuf.
,
10
(
1
), p.
JAMDSM0014
.10.1299/jamdsm.2016jamdsm0014
You do not currently have access to this content.