Abstract

Spherical clearance joints are essential for the successful deployment of space structures. When the clearance is small enough, the contacts will be considered conformal contact, which probably leads to inaccuracies in existing contact force models. To address the limitation, this paper proposes a novel hyperbolic contact surface Winkler model. First, a new fundamental formula incorporating a modified variable exponent is presented. Based on the surrogate modeling method, an optimized surrogate function for the variable coefficient is developed. In the optimization process, the finite element and response surface methods (RSMs) are introduced to improve the precision and reliability of the model. Compared with previous models, this paper organizes a detailed discussion and evaluation to validate the accuracy and application of the new proposed model, after which a dynamic example demonstrates the model's effectiveness. The results highlight the model's accuracy and practical efficacy, showing a strong correlation and minimal margin of error, especially when compared to finite element method (FEM) results. This improvement is attributed to the refined variable exponent, which accurately characterizes the relationship between contact force and penetration depth, and the optimized variable coefficient, which fine-tunes the contact force magnitude. Additionally, the model's versatility extends beyond the geometric properties of the contact bodies, offering a broad application scope. As a foundation of precise impact modeling, it is crucial to address the structural dynamic challenges inherent in high-precision space structures.

References

1.
Thornton
,
E. A.
, and
Paul
,
D. B.
,
1985
, “
Thermal-Structural Analysis of Large Space Structures—An Assessment of Recent Advances
,”
J. Spacecr. Rockets
,
22
(
4
), pp.
385
393
.10.2514/3.25761
2.
Li
,
T.
,
Jiang
,
J.
,
Deng
,
H.
,
Lin
,
Z.
, and
Wang
,
Z.
,
2013
, “
Form-Finding Methods for Deployable Mesh Reflector Antennas
,”
Chin. J. Aeronaut.
,
26
(
5
), pp.
1276
1282
.10.1016/j.cja.2013.04.062
3.
Puig
,
L.
,
Barton
,
A.
, and
Rando
,
N.
,
2010
, “
A Review on Large Deployable Structures for Astrophysics Missions
,”
Acta Astronaut.
,
67
(
1–2
), pp.
12
26
.10.1016/j.actaastro.2010.02.021
4.
Gruber
,
P.
,
Häuplik
,
S.
,
Imhof
,
B.
,
Özdemir
,
K.
,
Waclavicek
,
R.
, and
Perino
,
M. A.
,
2007
, “
Deployable Structures for a Human Lunar Base
,”
Acta Astronaut.
,
61
(
1–6
), pp.
484
495
.10.1016/j.actaastro.2007.01.055
5.
Xu
,
Y.
,
Guan
,
F.
,
Chen
,
J.
, and
Zheng
,
Y.
,
2012
, “
Structural Design and Static Analysis of a Double-Ring Deployable Truss for Mesh Antennas
,”
Acta Astronaut.
,
81
(
2
), pp.
545
554
.10.1016/j.actaastro.2012.09.004
6.
Liu
,
M.
,
Cao
,
D.
, and
Zhu
,
D.
,
2020
, “
Equivalent Dynamic Model of the Space Antenna Truss With Initial Stress
,”
AIAA J.
,
58
(
4
), pp.
1851
1863
.10.2514/1.J058647
7.
Zhang
,
J.
,
Deng
,
Z.
,
Guo
,
H.
, and
Liu
,
R.
,
2014
, “
Equivalence and Dynamic Analysis for Jointed Trusses Based on Improved Finite Elements
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
228
(
1
), pp.
47
61
.10.1177/1464419313512469
8.
Siriguleng
,
B.
,
Zhang
,
W.
,
Liu
,
T.
, and
Liu
,
Y. Z.
,
2020
, “
Vibration Modal Experiments and Modal Interactions of a Large Space Deployable Antenna With Carbon Fiber Material and Ring-Truss Structure
,”
Eng. Struct.
,
207
, p.
109932
.10.1016/j.engstruct.2019.109932
9.
Bai
,
Z.
,
Ning
,
Z.
, and
Zhou
,
J.
,
2022
, “
Study on Wear Characteristics of Revolute Clearance Joints in Mechanical Systems
,”
Micromachines
,
13
(
7
), p.
1018
.10.3390/mi13071018
10.
Guo
,
H.
,
Zhang
,
J.
,
Liu
,
R.
, and
Deng
,
Z.
,
2013
, “
Effects of Joint on Dynamics of Space Deployable Structure
,”
Chin. J. Mech. Eng.
,
26
(
5
), pp.
861
872
.10.3901/CJME.2013.05.861
11.
Quinn
,
D. D.
,
2012
, “
Modal Analysis of Jointed Structures
,”
J. Sound Vib.
,
331
(
1
), pp.
81
93
.10.1016/j.jsv.2011.08.017
12.
Yoshida
,
T.
,
2006
, “
Dynamic Characteristic Formulations for Jointed Space Structures
,”
J. Spacecr. Rockets
,
43
(
4
), pp.
771
779
.10.2514/1.15537
13.
Qi
,
Z.
,
Xu
,
Y.
,
Luo
,
X.
, and
Yao
,
S.
,
2010
, “
Recursive Formulations for Multibody Systems With Frictional Joints Based on the Interaction Between Bodies
,”
Multibody Syst. Dyn.
,
24
(
2
), pp.
133
166
.10.1007/s11044-010-9213-z
14.
Yao
,
H.
,
Huang
,
Y.
,
Ma
,
W.
,
Liang
,
L.
, and
Zhao
,
Y.
,
2023
, “
Dynamic Analysis of a Large Deployable Space Truss Structure Considering Semi-Rigid Joints
,”
Aerospace
,
10
(
9
), p.
821
.10.3390/aerospace10090821
15.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
,
Lankarani
,
H. M.
, and
Koshy
,
C. S.
,
2006
, “
A Study on Dynamics of Mechanical Systems Including Joints With Clearance and Lubrication
,”
Mech. Mach. Theory
,
41
(
3
), pp.
247
261
.10.1016/j.mechmachtheory.2005.10.002
16.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. P.
, and
Lankarani
,
H. M.
,
2007
, “
Dynamic Behaviour of Planar Rigid Multi-Body Systems Including Revolute Joints With Clearance
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
221
(
2
), pp.
161
174
.10.1243/14644193JMBD96
17.
Flores
,
P.
,
2010
, “
A Parametric Study on the Dynamic Response of Planar Multibody Systems With Multiple Clearance Joints
,”
Nonlinear Dyn.
,
61
(
4
), pp.
633
653
.10.1007/s11071-010-9676-8
18.
Flores
,
P.
,
Leine
,
R.
, and
Glocker
,
C.
,
2011
, “
Modeling and Analysis of Rigid Multibody Systems With Translational Clearance Joints Based on the Nonsmooth Dynamics Approach
,”
Multibody Dynamics: Computational Methods and Applications
, Springer, Berlin, Germany, pp.
107
130
.10.1007/978-90-481-9971-6
19.
Zhao
,
Y.
, and
Bai
,
Z. F.
,
2011
, “
Dynamics Analysis of Space Robot Manipulator With Joint Clearance
,”
Acta Astronaut.
,
68
(
7–8
), pp.
1147
1155
.10.1016/j.actaastro.2010.10.004
20.
Marques
,
F.
,
Isaac
,
F.
,
Dourado
,
N.
,
Souto
,
A. P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2017
, “
A Study on the Dynamics of Spatial Mechanisms With Frictional Spherical Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051013
.10.1115/1.4036480
21.
Hou
,
J.
,
Yao
,
G.
, and
Huang
,
H.
,
2018
, “
Dynamic Analysis of a Spatial Mechanism Including Frictionless Spherical Clearance Joint With Flexible Socket
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
3
), p.
031002
.10.1115/1.4038508
22.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13–14
), pp.
913
929
.10.1016/j.compstruc.2009.03.006
23.
Erkaya
,
S.
,
2018
, “
Experimental Investigation of Flexible Connection and Clearance Joint Effects on the Vibration Responses of Mechanisms
,”
Mech. Mach. Theory
,
121
, pp.
515
529
.10.1016/j.mechmachtheory.2017.11.014
24.
Chen
,
X.
, and
Sun
,
C.
,
2019
, “
Dynamic Modeling of Spatial Parallel Mechanism With Multi-Spherical Joint Clearances
,”
Int. J. Adv. Rob. Syst.
,
16
(
5
), p.
172988141987591
.10.1177/1729881419875910
25.
Chen
,
X.
,
Li
,
Y.
, and
Jia
,
Y.
,
2019
, “
Dynamic Response and Nonlinear Characteristics of Spatial Parallel Mechanism With Spherical Clearance Joint
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
4
), p.
041010
.10.1115/1.4042636
26.
Chen
,
X.
,
Wu
,
R.
, and
Jia
,
Y.
,
2022
, “
Dynamic Response and Chaotic Characteristics Analysis of Spatial Parallel Mechanisms With Multiple Spherical Clearance Joints
,”
J. Vib. Eng. Technol.
, 10, pp.
1
27
.10.1007/s42417-021-00387-7
27.
Wang
,
G.
, and
Wang
,
L.
,
2019
, “
Dynamics Investigation of Spatial Parallel Mechanism Considering Rod Flexibility and Spherical Joint Clearance
,”
Mech. Mach. Theory
,
137
, pp.
83
107
.10.1016/j.mechmachtheory.2019.03.017
28.
Jing
,
Q.
, and
Liu
,
H.
,
2023
, “
Dynamics and Wear Prediction of Mechanisms Considering Multiple Clearances and Coatings
,”
Lubricants
,
11
(
7
), p.
310
.10.3390/lubricants11070310
29.
Ma
,
X. F.
, and
Li
,
T. J.
,
2018
, “
Wave Analysis of Planar Deployable Structures With Revolute Clearance Joints Based on Spectral Element Method
,”
Int. J. Appl. Mech.
,
10
(
8
), p.
1850090
.10.1142/S1758825118500904
30.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
London
.
31.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1994
, “
Continuous Contact Force Models for Impact Analysis in Multibody Systems
,”
Nonlinear Dyn.
,
5
(
2
), pp.
193
207
.10.1007/BF00045676
32.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.10.1115/1.3423596
33.
Goodman
,
L. E.
, and
Keer
,
L.
,
1965
, “
The Contact Stress Problem for an Elastic Sphere Indenting an Elastic Cavity
,”
Int. J. Solids Struct.
,
1
(
4
), pp.
407
415
.10.1016/0020-7683(65)90005-3
34.
Noble
,
B.
, and
Hussain
,
M. A.
,
1969
, “
Exact Solution of Certain Dual Series for Indentation and Inclusion Problems
,”
Int. J. Eng. Sci.
,
7
(
11
), pp.
1149
1161
.10.1016/0020-7225(69)90081-0
35.
Liu
,
C. S.
,
Zhang
,
K.
, and
Yang
,
L.
,
2006
, “
Normal Force-Displacement Relationship of Spherical Joints With Clearances
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
2
), pp.
160
167
.10.1115/1.2162872
36.
Fang
,
X.
,
Zhang
,
C.
,
Chen
,
X.
,
Wang
,
Y.
, and
Tan
,
Y.
,
2015
, “
A New Universal Approximate Model for Conformal Contact and Non-Conformal Contact of Spherical Surfaces
,”
Acta Mech.
,
226
(
6
), pp.
1657
1672
.10.1007/s00707-014-1277-z
37.
Ascione
,
L.
, and
Grimaldi
,
A.
,
1984
, “
Unilateral Contact Between a Plate and an Elastic Foundation
,”
Meccanica
,
19
(
3
), pp.
223
233
.10.1007/BF01743736
38.
Ascione
,
L.
, and
Olivito
,
R. S.
,
1985
, “
Unbonded Contact of a Mindlin Plate on an Elastic Half-Space
,”
Meccanica
,
20
(
1
), pp.
49
58
.10.1007/BF02337062
39.
Zhang
,
J.
,
Guo
,
H.
,
Liu
,
R.
, and
Deng
,
Z.
,
2015
, “
Nonlinear Characteristic of Spherical Joints With Clearance
,”
J. Aerosp. Technol. Manage.
,
7
(
2
), pp.
179
184
.10.5028/jatm.v7i2.464
40.
Sassi
,
M.
, and
Desvignes
,
M.
,
1998
, “
A Seminumerical Method for Three-Dimensional Frictionless Contact Problems
,”
Math. Comput. Modell.
,
28
(
4–8
), pp.
413
425
.10.1016/S0895-7177(98)00131-9
41.
Rokach
,
I. V.
,
2003
, “
On the Accurate Determination of Contact Compliance for Impact Test Modelling
,”
Int. J. Solids Struct.
,
40
(
11
), pp.
2715
2729
.10.1016/S0020-7683(03)00088-X
42.
Pereira
,
C.
,
Ramalho
,
A.
, and
Ambrosio
,
J.
,
2015
, “
An Enhanced Cylindrical Contact Force Model
,”
Multibody Syst. Dyn.
,
35
(
3
), pp.
277
298
.10.1007/s11044-015-9463-x
43.
Yao
,
H.
,
Liang
,
L.
,
Ma
,
W.
,
Zhang
,
H.
, and
Zhao
,
Y.
,
2024
, “
An Enhanced Circumferential Winkler Contact Force Model for Cylindrical Clearance Joints
,”
Int. J. Appl. Mech.
,
16
(
2
), p.
2450019
.10.1142/S1758825124500194
44.
Liu
,
X.
,
Zhao
,
L.
,
Mao
,
J.
, and
Li
,
T.
,
2020
, “
Tangential Force Model for the Combined Finite-Discrete Element Method
,”
Int. J. Comput. Methods
,
17
(
9
), p.
1950068
.10.1142/S0219876219500683
45.
Bai
,
X.
,
Dong
,
Q.
,
Zheng
,
H.
, and
Zhou
,
K.
,
2021
, “
A Finite Element Model for Non-Newtonian Starved Thermal-Elastohydrodynamic Lubrication of 3D Line Contact
,”
Int. J. Appl. Mech.
,
13
(
9
), p.
2150107
.10.1142/S1758825121501076
46.
Ding
,
Y.
,
Liang
,
X.
, and
Wang
,
G.
,
2022
, “
An Incremental Contact Model for Rough Surfaces of Strain-Hardening Solids
,”
Int. J. Appl. Mech.
,
14
(
8
), p.
2250088
.10.1142/S1758825122500880
47.
Jia
,
Y.
, and
Chen
,
X.
,
2022
, “
Application of a New Conformal Contact Force Model to Nonlinear Dynamic Behavior Analysis of Parallel Robot With Spherical Clearance Joints
,”
Nonlinear Dyn.
,
108
(
3
), pp.
2161
2191
.10.1007/s11071-022-07344-3
48.
Wang
,
B.
,
Lyu
,
Q.
,
Jiang
,
L.
,
Chen
,
Y.
, and
Guo
,
Z.
,
2022
, “
An Extended Hertz Model for Incompressible Mooney–Rivlin Half-Space Under Finite Spherical Indentation
,”
Int. J. Appl. Mech.
,
14
(
10
), p.
2250103
.10.1142/S1758825122501034
49.
Ding
,
S.
,
Jian
,
B.
,
Zhang
,
Y.
,
Hu
,
Y.
,
Xia
,
R.
, and
Hu
,
G.
,
2023
, “
A Finite Element Solution to Normal Contact Forces of Viscoelastic Particles
,”
Int. J. Appl. Mech.
,
15
(
1
), p.
2350003
.10.1142/S1758825123500035
50.
Yaylacı
,
M.
,
Abanoz
,
M.
,
Yaylacı
,
E. U.
,
Ölmez
,
H.
,
Sekban
,
D. M.
, and
Birinci
,
A.
,
2022
, “
Evaluation of the Contact Problem of Functionally Graded Layer Resting on Rigid Foundation Pressed Via Rigid Punch by Analytical and Numerical (FEM and MLP) Methods
,”
Arch. Appl. Mech.
,
92
(
6
), pp.
1953
1971
.10.1007/s00419-022-02159-5
51.
Yaylacı
,
M.
,
Şabano
,
B. Ş.
,
Özdemir
,
M. E.
, and
Birinci
,
A.
,
2022
, “
Solving the Contact Problem of Functionally Graded Layers Resting on a HP and Pressed With a Uniformly Distributed Load by Analytical and Numerical Methods
,”
Struct. Eng. Mech., Int. J.
,
82
(
3
), pp.
401
416
.10.12989/sem.2022.82.3.401
52.
Lan
,
W.
,
Fan
,
S.
, and
Fan
,
S.
,
2021
, “
A Fractal Model of Elastic–Plastic Contact Between Rough Surfaces for a Low-Velocity Impact Process
,”
Int. J. Comput. Methods
,
18
(
9
), p.
2150039
.10.1142/S0219876221500390
53.
Zheng
,
Y.
,
Yang
,
C.
,
Wan
,
H. P.
,
Luo
,
Y.
,
Li
,
Y.
, and
Yu
,
Y.
,
2020
, “
Dynamics Analysis of Spatial Mechanisms With Dry Spherical Joints With Clearance Using Finite Particle Method
,”
Int. J. Struct. Stab. Dyn.
,
20
(
3
), p.
2050035
.10.1142/S0219455420500352
54.
Alves
,
J.
,
Peixinho
,
N.
,
da Silva
,
M. T.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2015
, “
A Comparative Study of the Viscoelastic Constitutive Models for Frictionless Contact Interfaces in Solids
,”
Mech. Mach. Theory
,
85
, pp.
172
188
.10.1016/j.mechmachtheory.2014.11.020
55.
Pereira
,
C. M.
,
Ramalho
,
A. L.
, and
Ambrósio
,
J. A.
,
2011
, “
A Critical Overview of Internal and External Cylinder Contact Force Models
,”
Nonlinear Dyn.
,
63
(
4
), pp.
681
697
.10.1007/s11071-010-9830-3
56.
Dubowsky
,
S.
, and
Freudenstein
,
F.
,
1971
, “
Dynamic Analysis of Mechanical Systems With Clearances—Part 1: Formation of Dynamic Model
,”
ASME J. Manuf. Sci. Eng.
,
93
(
1
), pp.
305
309
.10.1115/1.3427895
57.
Bauchau
,
O. A.
, and
Rodriguez
,
J.
,
2002
, “
Modeling of Joints With Clearance in Flexible Multibody Systems
,”
Int. J. Solids Struct.
,
39
(
1
), pp.
41
63
.10.1016/S0020-7683(01)00186-X
58.
Ting
,
E. C.
,
Shih
,
C.
, and
Wang
,
Y. K.
,
2004
, “
Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element
,”
J. Mech.
,
20
(
2
), pp.
113
122
.10.1017/S1727719100003336
59.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.10.1115/1.2912617
60.
Ambrósio
,
J. A. C.
,
2003
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Models
,”
Virtual Nonlinear Multibody Systems
, Springer, Dordrecht, The Netherlands, pp.
57
81
.10.1007/978-94-010-0203-5
You do not currently have access to this content.