Abstract

This paper presents a new method of controlling the end effector position and orientation of a flexible planar three-link mechanism. The coupled dynamic model was formulated using a method based on the Udwadia–Kalaba equations of motion for constrained systems. Lyapunov's theory was used to develop a nonlinear control law using piezoelectric actuators and the unconstrained link dynamic models. Numerical simulation was used to demonstrate the system tracking performance of the end effector using a reduced order controller applied to a higher order truth dynamic model.

References

1.
Asada
,
H.
, and
Slotine
,
J.
,
1986
,
Robot Analysis and Control
, 1st ed.,
Wiley
,
New York
.
2.
Craig
,
J.
,
2017
,
Introduction to Robotics
, 4th ed.,
Pearson
,
London
.
3.
Spong
,
M.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
, 2nd ed.,
Wiley
,
New York
.
4.
Dwivedy
,
S.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.10.1016/j.mechmachtheory.2006.01.014
5.
Crawley
,
E. F.
, and
de Luis
,
J.
,
1987
, “
Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
(
10
), pp.
1373
1385
.10.2514/3.9792
6.
Dosch
,
J.
,
Inman
,
D.
, and
Garcia
,
E.
,
1992
, “
A Self-Sensing Piezoelectric Actuator for Collocated Control
,”
J. Intell. Mater. Syst. Struct.
,
3
(
1
), pp.
166
185
.10.1177/1045389X9200300109
7.
Sun
,
D.
, and
Mills
,
J.
,
1999
, “
Study on Piezoelectric Actuators in Control of a Single-Link Flexible Manipulator
,”
Proceedings IEEE International Conference on Robotics and Automation
,
IEEE Xplore
, Vol.
2
,
Detroit, MI
, May 10–15, pp.
849
854
.10.1109/ROBOT.1999.772396
8.
Sangpet
,
T.
,
Kuntanapreeda
,
S.
, and
Schmidt
,
R.
,
2018
, “
An Adaptive Pid-Like Controller for Vibration Suppression of Piezo-Actuated Flexible Beams
,”
J. Vib. Control
,
24
(
12
), pp.
2656
2670
.10.1177/1077546317692160
9.
Karagiannis
,
A.
,
Clayton
,
G.
, and
Nataraj
,
C.
,
2016
, “
Boundary Control of Harmonic Disturbances of Flexible Cantilever Beams Using Piezoelectric Patch
,”
J. Vib. Control
,
22
(
18
), pp.
3916
3929
.10.1177/1077546314567723
10.
He
,
W.
,
Yang
,
C.
,
Zhu
,
J.
,
Liu
,
J.
, and
He
,
X.
,
2017
, “
Active Vibration Control of a Nonlinear Three-Dimensional Euler-Bernoulli Beam
,”
J. Vib. Control
,
23
(
19
), pp.
3196
3215
.10.1177/1077546315627722
11.
Gerses
,
K.
,
2007
, “
Vibration Control of a Single-Link Flexible Manipulator Using a Combined Linear and Angular Velocity Feedback Controller
,” Master of Applied Science,
University of Victoria
,
Victoria, BC
.
12.
Chu
,
Z.
, and
Cui
,
J.
,
2015
, “
Control of a Two-Link Flexible Manipulator Using an Input Shaper and Adaptivepositive Position Feedback
,”
Adv. Mech. Eng.
,
7
(
10
), pp. 1–13.10.1177/1687814015610466
13.
Mirzaee
,
E.
,
Eghtesad
,
M.
, and
Fazelzadeh
,
S.
,
2010
, “
Maneuver Control and Active Vibration Suppression of a Two-Link Flexible Arm Using a Hybrid Variable Structure/Lyapunov Control Design
,”
Acta Astronaut.
,
67
(
9–10
), pp.
1218
1232
.10.1016/j.actaastro.2010.06.054
14.
Karagülle
,
H.
,
Malgaca
,
L.
,
Dirilmiş
,
M.
,
Akdağ
,
M.
, and
Yavuz
,
Ş.
,
2017
, “
Vibration Control of a Two-Link Flexible Manipulator
,”
Eng. Comput.
,
23
(
12
), pp.
2023
2034
.10.1177/1077546315607694
15.
Sayahkarajy
,
M.
,
Mohamed
,
Z.
,
Faudzi
,
A.
, and
Supriyanto
,
E.
,
2016
, “
Hybrid Vibration and Rest-to-Rest Control of a Two-Link Flexible Robotic Arm Using h Loop Shaping Control Design
,”
Eng. Comput.
,
33
(
2
), pp.
395
409
.10.1108/EC-11-2014-0228
16.
Wu
,
S.
,
Tang
,
S.
, and
Huang
,
K.
,
2018
, “
Vibration Attenuation of a Two-Link Arm Carried by a Translational Stage
,”
J. Vib. Control
,
24
(
23
), pp.
5650
5664
.10.1177/1077546318763437
17.
Zhang
,
W.
,
2018
, “
The Impulse Spectrum Method for Vibration Suppression of a Flexible Multilink Robot
,”
J. Vib. Control
,
24
(
17
), pp.
3865
3881
.10.1177/1077546317714184
18.
Kilicaslan
,
S.
,
Ozgoren
,
M.
, and
Ider
,
S.
,
2007
, “
Control of Constrained Spatial Three-Link Flexible Manipulators
,”
Mediterranean Conference on Control and Automation
,
IEEE Xplore
,
Athens, Greece
, July 27–29, pp.
1
6
.10.1109/MED.2007.4433781
19.
Zhang
,
X.
,
2009
, “
Dynamic Modeling and Active Vibration Control of a Planar 3-Prr Parallel Manipulator With Three Flexible Links
,” Ph.D. thesis,
University of Toronto
,
Toronto, CA
.
20.
6Zhang
,
Q.
,
Li
,
C.
,
Zhang
,
J.
, and
Jin
,
J.
,
2016
, “
Active Vibration Control and Coupled Vibration Analysis of a Parallel Manipulator With Multiple Flexible Links
,”
Shock Vib.
,
7474085
(
17
), pp.
3865
3881
.10.1155/2016/7474085
21.
Khalil
,
H.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
22.
Vidyasagar
,
M.
,
2002
,
Nonlinear Systems
, 2nd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
23.
Banerjee
,
A.
,
2003
, “
Contributions to Multibody Dynamics to Space Flight: A Brief Review
,”
J. Guid. Control, Dyn.
,
26
(
3
), pp.
385
394
.10.2514/2.5069
24.
Sandor
,
G.
, and
Erdman
,
A.
,
1984
,
Advanced Mechanism Design: Analysis and Synthesis
, 1st ed., Vol.
2
,
Prentice Hall
,
Englewood Cliffs, NJ
.
25.
Shabana
,
A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.10.1023/A:1009773505418
26.
McMonagle
,
R.
,
2014
, “
Multi-Body Large Displacement Equations of Motion for Flexible Bodies Represented as Finite Element Models
,”
AIAA
Paper No. 2014–2646.10.2514/6.2014-2646
27.
Banerjee
,
A.
, and
Dickens
,
J.
,
1990
, “
Dynamics of an Arbitrary Flexible Body in Large Rotation and Translation
,”
J. Guid., Control Dyn.
,
13
(
2
), pp.
221
227
.10.2514/3.20540
28.
Kane
,
T.
,
Ryan
,
R.
, and
Banerjee
,
A.
,
1987
, “
Dynamics of a Cantilever Beam Attached to a Moving Base
,”
J. Guid., Control Dyn.
,
10
(
2
), pp.
139
151
.10.2514/3.20195
29.
Lugrís
,
U.
,
Naya
,
M. A.
,
Pérez
,
J. A.
, and
Cuadrado
,
J.
,
2008
, “
Implementation and Efficiency of Two Geometric Stiffening Approaches
,”
Multibody Syst. Dyn.
,
20
(
2
), pp.
147
161
.10.1007/s11044-008-9114-6
30.
Udwadia
,
F.
,
2008
, “
Optimal Tracking Control of Nonlinear Dynamical Systems
,”
Proc. R. Soc. Lond. A
,
464
(2097), pp.
2341
2363
.10.1098/rspa.2008.0040
31.
Udwadia
,
F.
, and
Kalaba
,
R.
,
1996
,
Analytical Dynamics: A New Approach
,
Cambridge University Press
,
New York
.
32.
Spada
,
R.
, and
Nicoletti
,
R.
,
2017
, “
Application of the Udwadia-Kalaba Methodology to the Active Control of Shaft
,”
J. Vib. Control
,
23
(
13
), pp.
2094
2110
.10.1177/1077546315611003
33.
Bajodah
,
A.
,
Hodges
,
D.
, and
Chen
,
Y.
,
2003
, “
New Form of Kane's Equations of Motion for Constrained Systems
,”
J. Guid., Control, Dyn.
,
26
(
1
), pp.
79
88
.10.2514/2.5017
34.
Weaver
,
W.
, and
Johnston
,
P.
,
1984
,
Finite Elements for Structural Analysis
,
Prentice Hall
,
Englewood Cliffs, NJ
.
35.
Craig
,
R.
, and
Kurdila
,
A.
,
2006
,
Fundamentals of Structural Dynamics
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
36.
Maciejowski
,
J.
,
1989
,
Multivariable Feedback Design
,
Addison-Wesley Publishing Company
,
Cornwall, GB
.
37.
Seiler
,
P.
,
Packard
,
A.
, and
Gahinet
,
P.
,
2020
, “
An Introduction to Disk Margins
,”
IEEE Control Syst. Mag.
,
40
(
5
), pp.
78
95
.10.1109/MCS.2020.3005277
38.
Cinquemani
,
S.
,
Ferrari
,
D.
, and
Bayati
,
I.
,
2015
, “
Reduction of Spillover Effects on Independent Modal Space Control Through Optimal Placement of Sensors and Actuators
,”
Smart Mater. Struct.
,
24
(
8
), p.
085006
.10.1088/0964-1726/24/8/085006
39.
Matlab
,
2021
, “
R2021a
,”
The MathWorks
,
Natick, MA
.
40.
Singer
,
N.
, and
Seering
,
P.
,
1990
, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
1
), pp.
76
82
.10.1115/1.2894142
You do not currently have access to this content.