Abstract

Two research gaps were identified in block–wheel–rail temperature assessment. First, current studies are not combined with train dynamics, which are better descriptions of the block–wheel–rail working environment. Second, current studies cannot simulate long rail sections. This paper developed a block–wheel–rail temperature assessment model by following the finite element idea. Models were validated by comparing with ansys Finite Element models and measured data. Case studies were carried out by combining the temperature model with a Longitudinal Train Dynamics model. A full-service and an emergency brake simulation were carried out for a 150-wagon heavy haul train on a 5680 m long rail section. The results show that, due to brake force differences at different wagon positions, the maximum block and wheel temperature differences among individual wagons in the full-service brake simulation were 117.01 °C and 117.91 °C, respectively. This highlighted the contribution of introducing train dynamics into block–wheel–rail temperature assessment. Rail temperature increases caused by wheel–rail temperature differences and frictional heating were about 10.60 °C and 2.65 °C, respectively.

References

1.
Günay
,
M.
,
Korkmaz
,
M. E.
, and
Özmen
,
R.
,
2020
, “
An Investigation on Braking Systems Used in Railway Vehicles
,”
Eng. Sci. Technol., Int. J.
,
23
(
2
), pp.
421
431
.10.1016/j.jestch.2020.01.009
2.
Wu
,
Q.
,
Cole
,
C.
,
Spiryagin
,
M.
,
Chang
,
C.
,
Wei
,
W.
,
Ursulyak
,
L.
,
Shvets
,
A.
,
Murtaza
,
M. A.
,
Mirza
,
I. M.
,
Zhelieznov
,
К.
,
Mohammadi
,
S.
,
Serajian
,
H.
,
Schick
,
B.
,
Berg
,
M.
,
Sharma
,
R. C.
,
Aboubakr
,
A.
,
Sharma
,
S. K.
,
Melzi
,
S.
,
Di Gialleonardo
,
E.
,
Bosso
,
N.
,
Zampieri
,
N.
,
Magelli
,
M.
,
Ion
,
C. C.
,
Routcliffe
,
I.
,
Pudovikov
,
O.
,
Menaker
,
G.
,
Mo
,
J.
,
Luo
,
S.
,
Ghafourian
,
A.
,
Serajian
,
R.
,
Santos
,
A. A.
,
Teodoro
,
Í. P.
,
Eckert
,
J. J.
,
Pugi
,
L.
,
Shabana
,
A.
, and
Cantone
,
L.
,
2021
, “
Freight Train Air Brake Models
,”
Int. J. Rail Transp.
, pp.
1
49
.10.1080/23248378.2021.2006808
3.
Milošević
,
M. S.
,
Stamenković
,
D. S.
,
Milojević
,
A. P.
, and
Tomić
,
M. M.
,
2012
, “
Modeling Thermal Effects in Braking Systems of Railway Vehicles
,”
Therm. Sci.
,
16
(
Suppl. 2
), pp.
515
526
.10.2298/TSCI120503188M
4.
Wasilewski
,
P.
, and
Grzes
,
P.
,
2016
, “
Numerical Model and Experimental Study of Temperature Fields in a Single Application of Railway Tread Brake
,”
Proceedings of EuroBrake
, Milan, Italy, June 13–15, pp.
1
10
.
5.
Vakkalagadda
,
M. R. K.
,
Srivastava
,
D. K.
,
Mishra
,
A.
, and
Racherla
,
V.
,
2015
, “
Performance Analyses of Brake Blocks Used by Indian Railways
,”
Wear
,
328–329
, pp.
64
76
.10.1016/j.wear.2015.01.044
6.
Ostermeyer
,
G.
,
2003
, “
On the Dynamics of the Friction Coefficient
,”
Wear
,
254
(
9
), pp.
852
858
.10.1016/S0043-1648(03)00235-7
7.
Ehret
,
M.
,
2021
, “
Identification of a Dynamic Friction Model for Railway Disc Brakes
,”
J Rail Rapid Transit
,
235
(
10
), pp.
1214
1224
.10.1177/0954409721993626
8.
Tudor
,
A.
,
Radulescu
,
C.
, and
Petre
,
I.
,
2003
, “
Thermal Effect of the Brake Shoes Friction on the Wheel/Rail Contact
,”
Tribol. Ind.
,
25
, pp.
27
32
.http://www.tribology.rs/journals/2003/1-2/3.pdf
9.
Fec
,
M. C.
, and
Sehitoglu
,
H.
,
1985
, “
Thermal-Mechanical Damage in Railroad Wheels Due to Hot Spotting
,”
Wear
,
102
(
1–2
), pp.
31
42
.10.1016/0043-1648(85)90089-4
10.
Walia
,
M. S.
,
Vernersson
,
T.
,
Lundén
,
R.
,
Blennow
,
F.
, and
Meinel
,
M.
,
2019
, “
Temperatures and Wear at Railway Tread Braking: Field Experiments and Simulations
,”
Wear
,
440–441
, p.
203086
.10.1016/j.wear.2019.203086
11.
Haidari
,
A.
, and
Hosseini-Tehrani
,
P.
,
2014
, “
Fatigue Analysis of Railway Wheels Under Combined Thermal and Mechanical Loads
,”
J. Therm. Stresses
,
37
(
1
), pp.
34
50
.10.1080/01495739.2013.850967
12.
Kish
,
A.
, and
Samavedam
,
G.
,
1991
, “
Dynamic Buckling of Continuous Welded Rail Track: Theory, Tests and Safety Concepts
,”
Transp. Res. Rec.
,
62
(
2
), pp.
23
38
.
13.
Tanvir
,
M. A.
,
1980
, “
Temperature Rise Due to Slip Between Wheel and Rail—An Analytical Solution for Hertzian Contact
,”
Wear
,
61
(
2
), pp.
295
308
.10.1016/0043-1648(80)90293-8
14.
Knothe
,
K.
, and
Liebelt
,
S.
,
1995
, “
Determination of Temperatures for Sliding Contact With Applications for Wheel-Rail Systems
,”
Wear
,
189
(
1–2
), pp.
91
99
.10.1016/0043-1648(95)06666-7
15.
Ertz
,
M.
, and
Knothe
,
K.
,
2002
, “
A Comparison of Analytical and Numerical Methods for the Calculation of Temperatures in Wheel/Rail Contact
,”
Wear
,
253
(
3–4
), pp.
498
508
.10.1016/S0043-1648(02)00120-5
16.
Srivastava
,
J. P.
,
Sarkar
,
P. K.
, and
Ranjan
,
V.
,
2016
, “
Effects of Thermal Load on Wheel–Rail Contacts: A Review
,”
J. Therm. Stresses
,
39
(
11
), pp.
1389
1418
.10.1080/01495739.2016.1216060
17.
Wasilewski
,
P.
,
2020
, “
Frictional Heating in Railway Brakes: A Review of Numerical Models
,”
Arch. Comput. Methods Eng.
,
27
(
1
), pp.
45
58
.10.1007/s11831-018-9302-3
18.
Vernersson
,
T.
,
2007
, “
Temperatures at Railway Tread Braking. Part 1: Modelling
,”
Proc. Inst. Mech., Eng., Part F
,
221
(
2
), pp.
167
182
.10.1243/0954409JRRT57
19.
Vernersson
,
T.
,
2007
, “
Temperatures at Railway Tread Braking. Part 2: Calibration and Numerical Examples
,”
Proc. Inst. Mech. Eng., Part F
,
221
(
4
), pp.
429
441
.10.1243/09544097JRRT90
20.
Vernersson
,
T.
, and
Lunden
,
R.
,
2007
, “
Temperatures at Railway Tread Braking. Part 3: Wheel and Block Temperatures and the Influence of Rail Chill
,”
Proc. Inst. Mech. Eng., Part F
,
221
(
4
), pp.
443
454
.10.1243/09544097JRRT91
21.
Teimourimanesh
,
S.
,
Vernersson
,
T.
, and
Lunden
,
R.
,
2014
, “
Modelling of Temperatures During Railway Tread Braking: Influence of Contact Conditions and Rail Cooling Effect
,”
Proc. Inst. Mech. Eng., Part F
,
228
(
1
), pp.
93
109
.10.1177/0954409712465696
22.
Teimourimanesh
,
S.
,
Vernersson
,
T.
,
Lunden
,
R.
,
Blennow
,
F.
, and
Meinel
,
M.
,
2014
, “
Tread Braking of Railway Wheels—Temperatures Generated by a Metro Train
,”
Proc. Inst. Mech. Eng., Part F
,
228
(
2
), pp.
210
221
.10.1177/0954409712470608
23.
Ghafelehbashi
,
S.
, and
Talaee
,
M.
,
2021
, “
An Analytical Thermal Model of a Railway Vehicle Brake Shoe
,”
Proc. Inst. Mech. Eng., Part F
,
236
(
4
), pp.
375
385
.10.1177/09544097211022107
24.
Soma
,
A.
,
Aimar
,
M.
, and
Zampieri
,
N.
,
2021
, “
Simulation of the Thermal Behavior of Cast Iron Brake Block During Braking Maneuvers
,”
Appl. Sci.
,
11
(
11
), p.
5010
.10.3390/app11115010
25.
Magelli
,
M.
,
2022
, “
Development of a 2D Finite Element Model for The Investigation of the Tread Braked Railway Wheels Thermo-Mechanical Behaviour
,”
IOP Conference Series
: Materials Science and Engineering, p.
012041
.
26.
Wu
,
Q.
, and
Cole
,
C.
,
2015
, “
Computing Schemes for Longitudinal Train Dynamics: Sequential, Parallel and Hybrid
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
064502
.10.1115/1.4029716
27.
Cantone
,
L.
,
2011
, “
TrainDy: The New Union Internationale Des Chemins de Fer Software for Freight Train Interoperability
,”
J. Rail Rapid Transit
,
225
(
1
), pp.
57
70
.10.1243/09544097JRRT347
28.
Shabana
,
A.
,
Aboubakr
,
A.
, and
Ding
,
L.
,
2012
, “
Use of the Non-Inertial Coordinates in the Analysis of Train Longitudinal Forces
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011001
.10.1115/1.4004122
29.
Bosso
,
N.
, and
Zampieri
,
N.
,
2017
, “
Long Train Simulation Using a Multibody Code
,”
Veh. Syst. Dyn.
,
55
(
4
), pp.
552
570
.10.1080/00423114.2016.1267373
30.
Wu
,
Q.
,
Cole
,
C.
,
Spiryagin
,
M.
,
Wang
,
Y.
,
Ma
,
W.
, and
Wei
,
C.
,
2017
, “
Railway Air Brake Model and Parallel Computing Scheme
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051017
.10.1115/1.4036421
31.
Pugi
,
L.
,
Malvezzi
,
M.
,
Allotta
,
B.
,
Banchi
,
L.
, and
Presciani
,
P.
,
2004
, “
A Parametric Library for the Simulation of Union Internationale Des Chemins de Fer (UIC) Pneumatic Braking System
,”
J. Rail Rapid Transit
,
218
(
2
), pp.
117
132
.10.1243/0954409041319632
32.
Wei
,
W.
,
Hu
,
Y.
,
Wu
,
Q.
,
Zhao
,
X.
,
Zhang
,
J.
, and
Zhang
,
Y.
,
2017
, “
An Air Brake Model for Longitudinal Train Dynamics Studies
,”
Veh. Syst. Dyn.
,
55
(
4
), pp.
517
533
.10.1080/00423114.2016.1254261
33.
Cheli
,
F.
, and
Melzi
,
S.
,
2010
, “
Experimental Characterization and Modelling of a Side Buffer for Freight Trains
,”
J. Rail Rapid Transit
,
224
(
6
), pp.
535
546
.10.1243/09544097JRRT317
34.
Wu
,
Q.
,
Cole
,
C.
, and
Spiryagin
,
M.
,
2016
, “
Parallel Computing Enables Whole-Trip Train Dynamics Optimizations
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
044503
.10.1115/1.4032075
35.
Wang
,
J.
,
Yang
,
J.
,
Zhao
,
Y.
,
Bai
,
Y.
, and
He
,
Y.
,
2020
, “
Nonsmooth Dynamics of a Gear–Wheelset System of Railway Vehicles Under Traction/Braking Conditions
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
8
), p.
081003
.10.1115/1.4047337
36.
Wu
,
Q.
,
Wang
,
B.
,
Cole
,
C.
, and
Spiryagin
,
M.
,
2021
, “
Implications of Lateral Coupler Forces for Rail Vehicle Curving Resistance
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
3
), p.
031002
.10.1115/1.4049530
37.
Wu
,
Q.
,
Spiryagin
,
M.
,
Cole
,
C.
,
Chang
,
C.
,
Guo
,
G.
,
Sakalo
,
A.
,
Wei
,
W.
,
Zhao
,
X.
,
Burgelman
,
N.
,
Wiersma
,
P.
,
Chollet
,
H.
,
Sebes
,
M.
,
Shamdani
,
A.
,
Melzi
,
S.
,
Cheli
,
F.
,
di Gialleonardo
,
E.
,
Bosso
,
N.
,
Zampieri
,
N.
,
Luo
,
S.
,
Wu
,
H.
, and
Kaza
,
G.-L.
,
2018
, “
International Benchmarking of Longitudinal Train Dynamics Simulators: Results
,”
Veh. Syst. Dyn.
,
56
(
3
), pp.
343
365
.10.1080/00423114.2017.1377840
38.
Crowe
,
K.
, and
Raj
,
P.
,
1998
, “
Analyses of Rail Chill Effect
,”
Federal Railroad Administration
,
Washington, DC
, FRA Report No. DOT/FRA/ORD-97/07.
39.
Wu
,
Q.
,
Magelli
,
M.
,
Zampieri
,
N.
, and
Bernal
,
E.
,
2022
, “
Adding a Brake Shoe Temperature Model Into Freight Train Longitudinal Dynamics Simulations
,”
Proc. Inst. Mech. Eng., Part F
, epub.10.1177/09544097221126274
40.
Bosomworth
,
C.
,
Spiryagin
,
M.
,
Alahakoon
,
S.
,
Cole
,
C.
,
Sneath
,
B.
, and
Makin
,
B.
,
2022
, “
Rail Temperature Variation Under Heavy Haul Operations
,”
Rail. Eng. Sci.
,
30
(
2
), pp.
148
161
.10.1007/s40534-021-00268-5
You do not currently have access to this content.