Abstract

The work presents optimized uncertainty and disturbance estimator (UDE) based robust controller to achieve the fixed wing micro-aerial vehicle (MAV) longitudinal and lateral stability. In the proposed control methodology, genetic algorithm (GA) is used to find the optimal value of UDE filter parameter (GAUDE) which is filter time constant. GA uses minimization of integral absolute time error (IATE) based fitness function. In this work, the proposed controller is GAUDE-based adaptive sliding mode control (SMC). The Lyapunov theory is used to establish the stability of the presented controller. The performance of proposed SMC-GAUDE controller is analyzed through comparative analysis using numerical simulations. The comparative analysis consists of the proposed controller performance evaluation with existing UDE-based and conventional controllers. The comparative study shows the faster response to attain desired states along with smooth and chattering free control efforts offered by SMC-GAUDE controller. The results present viability of the proposed controller. To show the robustness of the proposed controller, IATE performance index is evaluated. Also, the Monte Carlo simulations are done to highlight the efficacy of the proposed controller in the presence of parametric variations in MAV aerodynamic coefficients and velocity.

References

1.
Kodhanda
,
A.
,
Kolhe
,
J. P.
,
Zeru
,
T.
, and
Talole
,
S. E.
,
2017
, “
Robust Aircraft Control Based on UDE Theory
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
231
(
4
), pp.
728
742
.10.1177/0954410016641617
2.
Kodhanda
,
A.
,
Ali
,
N.
,
Sucheendran
,
M. M.
, and
Talole
,
S. E.
,
2018
, “
Robust Control of Nonlinear Resonance in a Clamped Rectangular Plate
,”
J. Vib. Control
,
24
(
18
), pp.
4176
4194
.10.1177/1077546317721419
3.
Das
,
S.
, and
Talole
,
S. E.
,
2016
, “
Robust Steering Autopilot Design for Marine Surface Vessels
,”
IEEE J. Oceanic Eng.
,
41
(
4
), pp.
913
922
.10.1109/JOE.2016.2518256
4.
Londhe
,
P.
,
Dhadekar
,
D. D.
,
Patre
,
B.
, and
Waghmare
,
L.
,
2017
, “
Uncertainty and Disturbance Estimator Based Sliding Mode Control of an Autonomous Underwater Vehicle
,”
Int. J. Dyn. Control
,
5
(
4
), pp.
1122
1138
.10.1007/s40435-016-0260-z
5.
Oucheriah
,
S.
,
2017
, “
Robust Control of the DC–DC Boost Converter Based on the Uncertainty and Disturbance Estimator
,”
Int. J. Electron.
,
104
(
11
), pp.
1810
1822
.10.1080/00207217.2017.1326529
6.
Tian
,
Z.
,
Lyu
,
Z.
,
Yuan
,
J.
, and
Wang
,
C.
,
2019
, “
UDE-Based Sliding Mode Control of DC–DC Power Converters With Uncertainties
,”
Control Eng. Pract.
,
83
, pp.
116
128
.10.1016/j.conengprac.2018.10.019
7.
Zhong
,
Q.-C.
, and
Rees
,
D.
,
2004
, “
Control of Uncertain LTI Systems Based on an Uncertainty and Disturbance Estimator
,”
J. Dyn. Sys. Meas. Control
,
126
(
4
), pp.
905
910
.10.1115/1.1850529
8.
Talole
,
S. E.
, and
Phadke
,
S. B.
,
2009
, “
Robust Input–Output Linearisation Using Uncertainty and Disturbance Estimation
,”
Int. J. Control
,
82
(
10
), pp.
1794
1803
.10.1080/00207170902756552
9.
Deepika
,
D.
,
Kaur
,
S.
, and
Narayan
,
S.
,
2020
, “
Integral Terminal Sliding Mode Control Unified With UDE for Output Constrained Tracking of Mismatched Uncertain Non-Linear Systems
,”
ISA Trans.
,
101
, pp.
1
9
.10.1016/j.isatra.2020.01.002
10.
Talole
,
S. E.
, and
Phadke
,
S. B.
,
2008
, “
Model Following Sliding Mode Control Based on Uncertainty and Disturbance Estimator
,”
ASME J. Dyn. Syst. Meas. Control
,
130
(
3
), p.
034501
.10.1115/1.2909604
11.
Zhong
,
Q.-C.
,
Kuperman
,
A.
, and
Stobart
,
R.
,
2011
, “
Design of UDE-Based Controllers From Their Two-Degreeof- Freedom Nature
,”
Int. J. Robust Nonlinear Control
,
21
(
17
), pp.
1994
2008
.10.1002/rnc.1674
12.
Ren
,
B.
,
Zhong
,
Q.-C.
, and
Chen
,
J.
,
2015
, “
Robust Control for a Class of Nonaffine Nonlinear Systems Based on the Uncertainty and Disturbance Estimator
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5881
5888
.10.1109/TIE.2015.2421884
13.
Kolhe
,
J. P.
,
Shaheed
,
M.
,
Chandar
,
T. S.
, and
Talole
,
S. E.
,
2013
, “
Robust Control of Robot Manipulators Based on Uncertainty and Disturbance Estimation
,”
Int. J. Robust Nonlinear Control
,
23
(
1
), pp.
104
122
.10.1002/rnc.1823
14.
Deshpande
,
V. S.
, and
Phadke
,
S. B.
,
2012
, “
Control of Uncertain Nonlinear Systems Using an Uncertainty and Disturbance Estimator
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
2
), p.
024501
.10.1115/1.4005042
15.
Wang
,
Q.
, and
Stengel
,
R. F.
,
2005
, “
Robust Nonlinear Flight Control of a High-Performance Aircraft
,”
IEEE Trans. Control Syst. Technol.
,
13
(
1
), pp.
15
26
.10.1109/TCST.2004.833651
16.
Visioli
,
A.
,
2001
, “
Tuning of PID Controllers With Fuzzy Logic
,”
IEE Proc. Control Theory Appl.
,
148
(
1
), pp.
1
8
.10.1049/ip-cta:20010232
17.
Fraser
,
A.
, Brinton, H., and
Burnell
,
D.
,
1970
, “
Computer Models in Genetics
,”
Computer in Models Genetics
,
Mcgraw-Hill Book Co.
,
New York
.
18.
Kim
,
D. H.
,
2007
, “
Ga–Pso Based Vector Control of Indirect Three Phase Induction Motor
,”
Appl. Soft Comp.
,
7
(
2
), pp.
601
611
.10.1016/j.asoc.2006.04.001
19.
Tran
,
H. K.
, and
Nguyen
,
T. N.
,
2018
, “
Flight Motion Controller Design Using Genetic Algorithm for a Quadcopter
,”
Meas. Control
,
51
(
3–4
), pp.
59
64
.10.1177/0020294018768744
20.
Alkamachi
,
A.
, and
Erçelebi
,
E.
,
2019
, “
A Proportional Derivative Sliding Mode Control for an Overactuated Quadcopter
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
233
(
4
), pp.
1354
1363
.10.1177/0954410017751739
21.
Li
,
Y.
,
Ng
,
K. C.
,
Murray-Smith
,
D. J.
,
Gray
,
G. J.
, and
Sharman
,
K. C.
,
1996
, “
Genetic Algorithm Automated Approach to the Design of Sliding Mode Control Systems
,”
Int. J. Control
,
63
(
4
), pp.
721
739
.10.1080/00207179608921865
22.
Zareb
,
M.
,
Nouibat
,
W.
,
Bestaoui
,
Y.
,
Ayad
,
R.
, and
Bouzid
,
Y.
,
2020
, “
Evolutionary Autopilot Design Approach for Uav Quadrotor by Using GA
,”
Iranian J. Sci. Technol. Trans. Electr. Eng.
,
44
(
1
), pp.
347
375
.10.1007/s40998-019-00214-6
23.
Zare
,
M.
,
Pazooki
,
F.
, and
Etemadi Haghighi
,
S.
,
2020
, “
Quadrotor Uav Position and Altitude Tracking Using an Optimized Fuzzy-Sliding Mode Control
,”
IETE J. Res.
,
66
(
1
), pp.
1
15
.10.1080/03772063.2020.1793694
24.
Wilburn
,
B. K.
,
Perhinschi
,
M. G.
, and
Wilburn
,
J. N.
,
2014
, “
A Modified Genetic Algorithm for Uav Trajectory Tracking Control Laws Optimization
,”
Int. J. Intell. Unmanned Syst.
,
2
(
2
), pp.
58
90
.10.1108/IJIUS-03-2014-0002
25.
Cheng
,
C.-T.
,
Fallahi
,
K.
,
Leung
,
H.
, and
Chi
,
K. T.
,
2012
, “
A Genetic Algorithm-Inspired UUV Path Planner Based on Dynamic Programming
,”
IEEE Trans. Syst., Man Cybern. Part C (Appl. Rev.)
,
42
(
6
), pp.
1128
1134
.10.1109/TSMCC.2011.2180526
26.
Grefenstette
,
J. J.
,
1986
, “
Optimization of Control Parameters for Genetic Algorithms
,”
IEEE Trans. Systems, Man Cybernetics
,
16
(
1
), pp.
122
128
.10.1109/TSMC.1986.289288
27.
Kar
,
A. K.
,
Dhar
,
N. K.
,
Chandola
,
R.
,
Nawaz
,
S. F.
, and
Verma
,
N. K.
,
2016
, “
Trajectory Tracking by Automated Guided Vehicle Using GA Optimized Sliding Mode Control
,”
2016 11th International Conference on Industrial and Information Systems (ICIIS)
,
IEEE
, Roorkee, India, Dec. 3–4, pp.
71
76
.10.1109/ICIINFS.2016.8262910
28.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
,
Data-Driven Science and Engineering: Machine Learning, Dynamical and Control Systems
,
Cambridge University Press
,
Cambridge, UK
.
29.
Zhou
,
C.
,
Liu
,
X.
,
Chen
,
W.
,
Xu
,
F.
, and
Cao
,
B.
,
2018
, “
Optimal Sliding Mode Control for an Active Suspension System Based on a Genetic Algorithm
,”
Algorithms
,
11
(
12
), p.
205
.10.3390/a11120205
30.
Roberge
,
V.
,
Tarbouchi
,
M.
, and
Labont’e
,
G.
,
2013
, “
Comparison of Parallel Genetic Algorithm and Particle Swarm Optimization for Real-Time Uav Path Planning
,”
IEEE Trans. Ind. Inform.
,
9
(
1
), pp.
132
141
.10.1109/TII.2012.2198665
31.
Espinoza-Fraire
,
A.
,
Chen
,
Y.
,
Dzul
,
A.
,
Lozano
,
R.
, and
Juarez
,
R.
,
2018
, “
Fixed-Wing MAV Adaptive pd Control Based on a Modified Mit Rule With Sliding-Mode Control
,”
J. Intell. Rob. Syst.
,
91
(
1
), pp.
101
114
.10.1007/s10846-018-0856-y
32.
Cook
,
M. V.
,
2012
,
Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control.
Butterworth-Heinemann
,
Waltham, MA
.
33.
Espinoza
,
T.
,
Dzul
,
A.
,
Lozano
,
R.
, and
Parada
,
P.
,
2014
, “
Backstepping-Sliding Mode Controllers Applied to a Fixed-Wing Uav
,”
J. Intell. Rob. Syst.
,
73
(
1–4
), pp.
67
79
.10.1007/s10846-013-9955-y
34.
Slotine
,
J.-J. E.
,
Li
,
W.
, et al.,
1991
,
Applied Nonlinear Control
, Vol.
199
,
Prentice Hall, Englewood Cliffs
,
NJ
.
35.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems Third Edition
,
Patience Hall
,
Upper Saddle River, NJ
, p.
115
.
You do not currently have access to this content.