Abstract

In this article, nonlinear dynamics tools are employed to quantify the ability of pendulum harvesters to recover energy from the sea waves. The versatility of pendulum harvesters is highlighted, as it is shown that devices can be scaled to produce usable energy from 6 W to 10 kW. Several aspects of the pendulum's dynamics having a key influence on power generation are discussed using bifurcation diagrams, parameter spaces, and basins of attraction. Parameter ranges that minimize the need for a control action are identified, and an explanation is provided on why tilting the pendulum's plane of rotation improves power generation. A practical mathematical model of the parametric pendulum is formulated for such a purpose. This model incorporates the possibility of accounting arbitrary number of concentric masses while allowing a simple and direct correlation between dimensionless approaches and the myriad possible physical configurations of the system.

References

1.
Nandakumar
,
K.
,
Wiercigroch
,
M.
, and
Chatterjee
,
A.
,
2012
, “
Optimum Energy Extraction From Rotational Motion in a Parametrically Excited Pendulum
,”
Mech. Res. Commun.
,
43
, pp.
7
14
.10.1016/j.mechrescom.2012.03.003
2.
Lenci
,
S.
,
Brocchini
,
M.
, and
Lorenzoni
,
C.
,
2012
, “
Experimental Rotations of a Pendulum on Water Waves
,”
J. Comput. Nonlinear Dyn.
,
7
, p.
011007
.10.1115/1.4004547
3.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1991
,
Advanced Series on Ocean Engineering: Water Wave Mechanics for Engineers and Scientists
, World Scientific, Singapore.
4.
Dostal
,
L.
,
Korner
,
K.
,
Kreuzer
,
E.
, and
Yurchenko
,
D.
,
2018
, “
Pendulum Energy Converter Excited by Random Loads
,”
ZAMM Z. Fur Angew. Math. Mech.
,
98
(
3
), pp.
349
366
.10.1002/zamm.201700007
5.
Holthuijsen
,
L. H.
,
2007
,
Waves in Oceanic and Coastal Waters
,
Cambridge University Press
, New York.
6.
Dotti
,
F. E.
,
Reguera
,
F.
, and
Machado
,
S. P.
,
2015
, “
A Review on the Nonlinear Dynamics of Pendulum Systems for Energy Harvesting From Ocean Waves
,”
PANACM
2015—1st Pan-American Congress on Computational Mechanics, in Conjunction With the 11th Argentine Congress on Computational Mechanics, MECOM 2015, Buenos Aires, Apr. 27–29, pp.
1516
1529
.https://www.researchgate.net/publication/301673929_A_review_on_the_nonlinear_dynamics_of_pendulum_systems_for_energy_harvesting
7.
Garira
,
W.
, and
Bishop
,
S. R.
,
2003
, “
Rotating Solutions of the Parametrically Excited Pendulum
,”
J. Sound Vib.
,
263
(
1
), pp.
233
239
.10.1016/S0022-460X(02)01435-9
8.
Lenci
,
S.
, and
Rega
,
G.
,
2011
, “
Experimental Versus Theoretical Robustness of Rotating Solutions in a Parametrically Excited Pendulum: A Dynamical Integrity Perspective
,”
Phys. D Nonlinear Phenom.
,
240
(
9–10
), pp.
814
824
.10.1016/j.physd.2010.12.014
9.
Yurchenko
,
D.
, and
Alevras
,
P.
,
2013
, “
Dynamics of the N-Pendulum and Its Application to a Wave Energy Converter Concept
,”
Int. J. Dyn. Control
,
1
(
4
), pp.
290
299
.10.1007/s40435-013-0033-x
10.
Yurchenko
,
D.
, and
Alevras
,
P.
,
2018
, “
Parametric Pendulum Based Wave Energy Converter
,”
Mech. Syst. Signal Process.
,
99
, pp.
504
515
.10.1016/j.ymssp.2017.06.026
11.
Clifford
,
M. J.
, and
Bishop
,
S. R.
,
1995
, “
Rotating Periodic Orbits of the Parametrically Excited Pendulum
,”
Phys. Lett. A.
,
201
(
2–3
), pp.
191
196
.10.1016/0375-9601(95)00255-2
12.
Kecik
,
K.
, and
Kapitaniak
,
M.
,
2014
, “
Parametric Analysis of Magnetorheologically Damped Pendulum Vibration Absorber
,”
Int. J. Struct. Stab. Dyn.
,
14
(
8
), p.
1440015
.10.1142/S021945541440015X
13.
Li
,
Y.
, and
Yu
,
Y. H.
,
2012
, “
A Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4352
4364
.10.1016/j.rser.2011.11.008
You do not currently have access to this content.