Common trends in model reduction of large nonlinear finite element (FE)-discretized systems involve Galerkin projection of the governing equations onto a low-dimensional linear subspace. Though this reduces the number of unknowns in the system, the computational cost for obtaining the reduced solution could still be high due to the prohibitive computational costs involved in the evaluation of nonlinear terms. Hyper-reduction methods are then used for fast approximation of these nonlinear terms. In the finite element context, the energy conserving sampling and weighing (ECSW) method has emerged as an effective tool for hyper-reduction of Galerkin-projection-based reduced-order models (ROMs). More recent trends in model reduction involve the use of nonlinear manifolds, which involves projection onto the tangent space of the manifold. While there are many methods to identify such nonlinear manifolds, hyper-reduction techniques to accelerate computation in such ROMs are rare. In this work, we propose an extension to ECSW to allow for hyper-reduction using nonlinear mappings, while retaining its desirable stability and structure-preserving properties. As a proof of concept, the proposed hyper-reduction technique is demonstrated over models of a flat plate and a realistic wing structure, whose dynamics have been shown to evolve over a nonlinear (quadratic) manifold. An online speed-up of over one thousand times relative to the full system has been obtained for the wing structure using the proposed method, which is higher than its linear counterpart using the ECSW.

References

1.
Chaturantabut
,
S.
, and
Sorensen
,
D. C.
,
2010
, “
Nonlinear Model Reduction Via Discrete Empirical Interpolation
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2737
2764
.
2.
Tiso
,
P.
, and
Rixen
,
D. J.
,
2013
, “
Discrete Empirical Interpolation Method for Finite Element Structural Dynamics
,”
Topics in Nonlinear Dynamics, Volume 1
, G. Kerschen, D. Adams, and A. Carrella, eds., Vol. 35,
Springer
,
New York
.
3.
Chaturantabut
,
S.
,
Beattie
,
C.
, and
Gugercin
,
S.
,
2016
, “
Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems
,”
SIAM J. Sci. Comput
., 38(5), pp. B837–B865.
4.
Barrault
,
M.
,
Maday
,
Y.
,
Nguyen
,
N. C.
, and
Patera
,
A. T.
,
2004
, “
An ‘Empirical Interpolation' Method: Application to Efficient Reduced-Basis Discretization of Partial Differential Equations
,”
C. R. Math. Acad. Sci. Paris
,
339
(
9
), pp.
667
672
.
5.
Farhat
,
C.
,
Avery
,
P.
,
Chapman
,
T.
, and
Cortial
,
J.
,
2014
, “
Dimensional Reduction of Nonlinear Finite Element Dynamic Models With Finite Rotations and Energy-Based Mesh Sampling and Weighting for Computational Efficiency
,”
Int. J. Numer. Methods Eng.
,
98
(
9
), pp.
625
662
.
6.
Matthies
,
H. G.
, and
Meyer
,
M.
,
2003
, “
Nonlinear Galerkin Methods for the Model Reduction of Nonlinear Dynamical Systems
,”
Comput. Struct.
,
81
(
9
), pp.
1277
1286
.
7.
Farhat
,
C.
,
Chapman
,
T.
, and
Avery
,
P.
,
2015
, “
Structure-Preserving, Stability, and Accuracy Properties of the Energy-Conserving Sampling and Weighting Method for the Hyper Reduction of Nonlinear Finite Element Dynamic Models
,”
Int. J. Numer. Methods Eng.
,
102
(
5
), pp.
1077
1110
.
8.
Jain
,
S.
,
Tiso
,
P.
, and
Haller
,
G.
,
2018
, “
Exact Nonlinear Model Reduction for a von Kármán Beam: Slow-Fast Decomposition and Spectral Submanifolds
,”
J. Sound Vib.
,
423
, pp.
195
211
.
9.
Daniel Millán
,
D.
, and
Arroyo
,
M.
,
2013
, “
Nonlinear Manifold Learning for Model Reduction in Finite Elastodynamics
,”
Comput. Methods Appl. Mech. Eng.
, 261–262, pp.
118
131
.
10.
Peharz
,
R.
, and
Pernkopf
,
F.
,
2012
, “
Sparse Nonnegative Matrix Factorization With ℓ0-Constraints
,”
Neurocomputing
,
80
, pp.
38
46
.
11.
Jain
,
S.
,
Tiso
,
P.
,
Rixen
,
D. J.
, and
Rutzmoser
,
J. B.
,
2017
, “
A Quadratic Manifold for Model Order Reduction of Nonlinear Structural Dynamics
,”
Comput. Struct.
,
188
, pp.
80
94
.
12.
Rutzmoser
,
J. B.
,
Rixen
,
D. J.
,
Tiso
,
P.
, and
Jain
,
S.
,
2017
, “
Generalization of Quadratic Manifolds for Reduced Order Modeling of Nonlinear Structural Dynamics
,”
Comput. Struct.
,
192
, pp.
196
209
.
13.
Lines
,
L. R.
, and
Treitel
,
S.
,
1984
, “
A Review of Least-Squares Inversion and Its Application to Geophysical Problems
,”
Geophys. Prospect.
,
32
(
2
), pp.
159
186
.
14.
van der Maaten, L. J. P., Postma, E. O., and van den Herik, H. J., 2009, “Dimensionality Reduction: A Comparative Review,” Tilburg University, Tilburg, The Netherlands, Report No.
TiCC-TR 2009–005
.https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf
15.
Ryckelynck
,
D.
,
2005
, “
A Priori Hyperreduction Method: An Adaptive Approach
,”
J. Comput. Phys.
,
201
(
1
), pp.
346
366
.
16.
Jain
,
S.
,
2015
, “
Model Order Reduction for Non-Linear Structural Dynamics
,” Master Thesis, Delft University of Technology, Delft, The Netherlands.
17.
Jain
,
S.
, and
Tiso
,
P.
,
2018
, “
Simulation-Free Hyper-Reduction for Geometrically Nonlinear Structural Dynamics: A Quadratic Manifold Lifting Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
7
), p.
071003
.
18.
Mignolet
,
M. P.
,
Przekop
,
A.
,
Rizzi
,
S. A.
, and
Spottswood
,
S. M.
,
2013
, “
A Review of Indirect/Non-Intrusive Reduced Order Modeling of Nonlinear Geometric Structures
,”
J Sound Vib
,
332
(
10
), pp.
2437
2460
.
19.
Barbič
,
J.
, and
James
,
D. L.
,
2005
, “
Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models
,”
ACM Trans. Graph.
,
24
(
3
), pp.
982
990
.
20.
Everson
,
R.
, and
Sirovich
,
L.
,
1995
, “
Karhunen-Loeve Procedure for Gappy Data
,”
J. Opt. Soc. Am. A
,
12
(
8
), pp.
1657
1664
.
21.
Haller
,
G.
, and
Ponsioen
,
S.
,
2017
, “
Exact Model Reduction by a Slow? Fast Decomposition of Nonlinear Mechanical Systems
,”
Nonlinear Dyn.
,
90
(
1
), pp.
617
647
.
22.
Carlberg
,
K.
,
Bou-Mosleh
,
C.
, and
Farhat
,
C.
,
2011
, “
Efficient Non-Linear Model Reduction Via a Least-Squares Petrov? Galerkin Projection and Compressive Tensor Approximations
,”
Int. J. Numer. Meth. Eng.
,
86
(
2
), pp.
155
181
.
23.
Carlberg
,
K.
,
Farhat
,
C.
,
Cortial
,
J.
, and
Amsallem
,
D.
,
2013
, “
The GNAT Method for Nonlinear Model Reduction: Effective Implementation and Application to Computational Fluid Dynamics and Turbulent Flows
,”
J. Comput. Phys.
,
242
, pp.
623
647
.
24.
Chapman
,
T.
,
Avery
,
P.
,
Collins
,
P.
, and
Farhat
,
C.
,
2017
, “
Accelerated Mesh Sampling for the Hyper Reduction of Nonlinear Computational Models
,”
Int. J. Numer. Meth. Eng.
,
109
(
12
), pp.
1623
1654
.
25.
Rega
,
G.
, and
Troger
,
H.
,
2005
, “
Dimension Reduction of Dynamical Systems: Methods, Models, Applications
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
1
15
.
26.
Ding
,
Q.
, and
Zhang
,
K.
,
2012
, “
Order Reduction and Nonlinear Behaviors of a Continuous Rotor System
,”
Nonlinear Dyn.
,
67
(
1
), pp.
251
262
.
27.
Lall
,
S.
,
Krysl
,
P.
, and
Marsden
,
J.
,
2003
, “
Structure-Preserving Model Reduction for Mechanical Systems
,”
Phys. D
,
184
(
1–4
), pp.
304
318
.
28.
Brüls
,
O.
,
Duysinx
,
P.
, and
Golinval
,
J.-C.
,
2007
, “
The Global Modal Parameterization for Non-Linear Model-Order Reduction in Flexible Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
69
(
5
), pp.
948
977
.
29.
Heirman
,
G. H. K.
,
Naets
,
F.
, and
Desmet
,
W.
,
2011
, “
A System-Level Model Reduction Technique for the Efficient Simulation of Flexible Multibody Systems
,”
Int. J. Numer. Methods Eng.
,
85
(
3
), pp.
330
354
.
30.
Aarts
,
R. G. K. M.
, and
Jonker
,
J. B.
,
2002
, “
Dynamic Simulation of Planar Flexible Link Manipulators Using Adaptive Modal Integration
,”
Multibody Syst. Dyn.
,
7
(
1
), pp.
31
50
.
31.
Rutzmoser
,
J. B.
, and
Rixen
,
D. J.
,
2017
, “
A Lean and Efficient Snapshot Generation Technique for the Hyper-Reduction of Nonlinear Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
330
349
.
32.
Géradin
,
M.
, and
Rixen
,
D.
,
2015
,
Mechanical Vibrations: Theory and Application to Structural Dynamics
, 3rd ed.,
Wiley
,
Chichester, UK
.
You do not currently have access to this content.