Configuration spaces with Lie group structure display kinematical nonlinearities of mechanical systems. In Lie group time integration, this nonlinear structure is also considered at the time-discrete level using nonlinear updates of the configuration variables. For practical implementation purposes, these update formulae have to be adapted to each specific Lie group setting that may be characterized from the algorithmic viewpoint by group operation, exponential map, tilde, and tangent operator. In this paper, we discuss these practical aspects for the time integration of a geometrically exact Cosserat rod model with rotational degrees-of-freedom being represented by unit quaternions. Shearing and longitudinal extension of the Cosserat rod may be neglected using suitable constraints that result in a differential-algebraic equation (DAE) formulation of the beam structure. The specific structure of unconstrained systems and constrained systems is exploited by tailored algorithms for the corrector iteration of the generalized-α Lie group integrator.

References

1.
Géradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
,
Chichester, UK
.
2.
Betsch
,
P.
, and
Steinmann
,
P.
,
2001
, “
Constrained Integration of Rigid Body Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
191
(3–5), pp.
467
488
.
3.
Romero
,
I.
,
2004
, “
The Interpolation of Rotations and Its Application to Finite Element Models of Geometrically Exact Rods
,”
Comput. Mech.
,
34
(2), pp.
121
133
.
4.
Betsch
,
P.
, and
Siebert
,
R.
,
2009
, “
Rigid Body Dynamics in Terms of Quaternions: Hamiltonian Formulation and Conserving Numerical Integration
,”
Int. J. Numer. Methods. Eng.
,
79
(
4
), pp.
444
473
.
5.
Brüls
,
O.
, and
Cardona
,
A.
,
2010
, “
On the Use of Lie Group Time Integrators in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031002
.
6.
Celledoni
,
E.
, and
Säfström
,
N.
,
2010
, “
A Hamiltonian and Multi-Hamiltonian Formulation of a Rod Model Using Quaternions
,”
Comput. Methods Appl. Mech. Eng.
,
199
(45–48), pp.
2813
2819
.
7.
Müller
,
A.
, and
Terze
,
Z.
,
2014
, “
The Significance of the Configuration Space Lie Group for the Constraint Satisfaction in Numerical Time Integration of Multibody Systems
,”
Mech. Mach. Theory
,
82
, pp.
173
202
.
8.
Crouch
,
P.
, and
Grossman
,
R.
,
1993
, “
Numerical Integration of ODEs on Manifolds
,”
J. Nonlinear Sci.
,
3
(
1
), pp.
1
33
.
9.
Munthe-Kaas
,
H.
,
1998
, “
Runge–Kutta Methods on Lie Groups
,”
BIT Numer. Math.
,
38
(
1
), pp.
92
111
.
10.
Arnold
,
M.
,
Brüls
,
O.
, and
Cardona
,
A.
,
2011
, “
Convergence Analysis of Generalized-α Lie Group Integrators for Constrained Systems
,”
Multibody Dynamics 2011
ECCOMAS
Thematic Conference,
J.
Samin
and
P.
Fisette
, eds.
11.
Arnold
,
M.
,
Brüls
,
O.
, and
Cardona
,
A.
,
2015
, “
Error Analysis of Generalized-α Lie Group Time Integration Methods for Constrained Mechanical Systems
,”
Numerische Math.
,
129
(
1
), pp.
149
179
.
12.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
,
2006
,
Geometric Numerical Integration. Structure–Preserving Algorithms for Ordinary Differential Equations
, 2nd ed.,
Springer-Verlag
,
Berlin
.
13.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.
14.
Brüls
,
O.
,
Arnold
,
M.
, and
Cardona
,
A.
,
2011
, “
Two Lie Group Formulations for Dynamic Multibody Systems With Large Rotations
,”
ASME
Paper DETC2011-48132.
15.
Lang
,
H.
,
Linn
,
J.
, and
Arnold
,
M.
,
2009
, “
Multibody Dynamics Simulation of Geometrically Exact Cosserat Rods
,” Fraunhofer ITWM, Kaiserslautern, Germany, Report No. 159.
16.
Lang
,
H.
,
Linn
,
J.
, and
Arnold
,
M.
,
2011
, “
Multibody Dynamics Simulation of Geometrically Exact Cosserat Rods
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
285
312
.
17.
Lang
,
H.
, and
Arnold
,
M.
,
2012
, “
Numerical Aspects in the Dynamic Simulation of Geometrically Exact Rods
,”
Appl. Numer. Math.
,
62
(
10
), pp.
1411
1427
.
18.
Simo
,
J.
, and
Vu-Quoc
,
L.
,
1988
, “
On the Dynamics in Space of Rods Undergoing Large Motions—A Geometrically Exact Approach
,”
Comput. Methods Appl. Mech. Eng.
,
66
(
2
), pp.
125
161
.
19.
Hairer
,
E.
, and
Wanner
,
G.
,
1996
,
Solving Ordinary Differential Equations—II: Stiff and Differential-Algebraic Problems
, 2nd ed.,
Springer-Verlag
,
Berlin
.
20.
Chung
,
J.
, and
Hulbert
,
G.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
21.
Bottasso
,
C.
,
Bauchau
,
O.
, and
Cardona
,
A.
,
2007
, “
Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index Three Differential Algebraic Equations
,”
SIAM J. Sci. Comp.
,
29
(
1
), pp.
397
414
.
22.
Deuflhard
,
P.
,
2004
,
Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms
,
Springer
,
Berlin
.
23.
Kelley
,
C.
,
2003
,
Solving Nonlinear Equations With Newton's Method
,
SIAM
,
Philadelphia, PA
.
24.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
. “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.
25.
Hante
,
S.
,
2015
, “
A General Purpose Lie Group Generalized-α Time Integrator Applied to Nonlinear Flexible Geometrically Exact Beam Models
,” Master's thesis, Martin Luther University Halle-Wittenberg, Halle, Germany.
26.
Arnold
,
M.
,
1995
, “
A Perturbation Analysis for the Dynamical Simulation of Mechanical Multibody Systems
,”
Appl. Numer. Math.
,
18
(1–3), pp.
37
56
.
You do not currently have access to this content.