Graphical Abstract Figure

Experimental workflow. A) Schematic of image acquisition configuration and mechanical tester. Blue box= Arduino controller. Grey box= power supply, red arrow=direction of axial compression. B) Representative image of ultrasound transducer with sample loaded into mechanical tester. C) Schematic of cycle averaging to create a single representative cycle. D) Region of interest (yellow box), 75% of the x and y dimensions. Anatomic directionality shown in blue dotted arrows. Ant=anterior, Post.=posterior. Scale bar= 1mm. E) Direct deformation estimation (DDE) calculates Green-Lagrange strain tensor (Exy) from deformation gradient tensor (F) across subset regions (dashed white boxes).

Graphical Abstract Figure

Experimental workflow. A) Schematic of image acquisition configuration and mechanical tester. Blue box= Arduino controller. Grey box= power supply, red arrow=direction of axial compression. B) Representative image of ultrasound transducer with sample loaded into mechanical tester. C) Schematic of cycle averaging to create a single representative cycle. D) Region of interest (yellow box), 75% of the x and y dimensions. Anatomic directionality shown in blue dotted arrows. Ant=anterior, Post.=posterior. Scale bar= 1mm. E) Direct deformation estimation (DDE) calculates Green-Lagrange strain tensor (Exy) from deformation gradient tensor (F) across subset regions (dashed white boxes).

Close modal

Abstract

Measurement of internal intervertebral disc strain is paramount for understanding the underlying mechanisms of injury and validating computational models. Although advancements in noninvasive imaging and image processing have made it possible to quantify strain, they often rely on visual markers that alter tissue mechanics and are limited to static testing that is not reflective of physiologic loading conditions. The purpose of this study was to integrate high-frequency ultrasound and texture correlation to quantify disc strain during dynamic loading. We acquired ultrasound images of the posterior side of bovine discs in the transverse plane throughout 0–0.5 mm of assigned axial compression at 0.3–0.5 Hz. Internal Green-Lagrangian strains were quantified across time using direct deformation estimation (DDE), a texture correlation method. Median principal strain at maximal compression was 0.038±0.011 for E1 and −0.042±0.012 for E2. Strain distributions were heterogeneous throughout the discs, with higher strains noted near the disc endplates. This methodological report shows that high-frequency ultrasound can be a valuable tool for quantification of disc strain under dynamic loading conditions. Further work will be needed to determine if diseased or damaged discs reveal similar strain patterns, opening the possibility of clinical use in patients with disc disease.

References

1.
Fatoye
,
F.
,
Gebrye
,
T.
,
Mbada
,
C. E.
, and
Useh
,
U.
,
2023
, “
Clinical and Economic Burden of Low Back Pain in Low- and Middle-Income Countries: A Systematic Review
,”
BMJ Open
,
13
(
4
), p.
e064119
.10.1136/bmjopen-2022-064119
2.
Rubin
,
D. I.
,
2007
, “
Epidemiology and Risk Factors for Spine Pain
,”
Neurol. Clin.
,
25
(
2
), pp.
353
371
.10.1016/j.ncl.2007.01.004
3.
Zhou
,
M.
,
Theologis
,
A. A.
, and
O'Connell
,
G. D.
,
2024
, “
Understanding the Etiopathogenesis of Lumbar Intervertebral Disc Herniation: From Clinical Evidence to Basic Scientific Research
,”
JOR Spine
,
7
(
1
), p.
e1289
.10.1002/jsp2.1289
4.
Kreiner
,
D. S.
,
Matz
,
P.
,
Bono
,
C. M.
,
Cho
,
C. H.
,
Easa
,
J. E.
,
Ghiselli
,
G.
,
Ghogawala
,
Z.
, et al.,
2020
, “
Guideline Summary Review: An Evidence-Based Clinical Guideline for the Diagnosis and Treatment of Low Back Pain
,”
Spine J.
,
20
(
7
), pp.
998
1024
.10.1016/j.spinee.2020.04.006
5.
Costi
,
J. J.
,
Stokes
,
I. A.
,
Gardner-Morse
,
M.
,
Laible
,
J. P.
,
Scoffone
,
H. M.
, and
Iatridis
,
J. C.
,
2007
, “
Direct Measurement of Intervertebral Disc Maximum Shear Strain in Six Degrees of Freedom: Motions That Place Disc Tissue at Risk of Injury
,”
J. Biomech.
,
40
(
11
), pp.
2457
2466
.10.1016/j.jbiomech.2006.11.006
6.
Seroussi
,
R. E.
,
Krag
,
M. H.
,
Muller
,
D. L.
, and
Pope
,
M. H.
,
1989
, “
Internal Deformations of Intact and Denucleated Human Lumbar Discs Subjected to Compression, Flexion, and Extension Loads
,”
J. Orthop. Res.
,
7
(
1
), pp.
122
131
.10.1002/jor.1100070117
7.
Kusaka
,
Y.
,
Nakajima
,
S-I.
,
Uemura
,
O.
,
Aoshiba
,
H.
,
Seo
,
Y.
, and
Hirasawa
,
Y.
,
2001
, “
Intradiscal Solid Phase Displacement as a Determinant of the Centripetal Fluid Shift in the Loaded Intervertebral Disc
,”
Spine
,
26
(
9
), pp.
E174
E181
.10.1097/00007632-200105010-00009
8.
Ghosh
,
S.
,
Cimino
,
J. G.
,
Scott
,
A. K.
,
Damen
,
F. W.
,
Phillips
,
E. H.
,
Veress
,
A. I.
,
Neu
,
C. P.
, and
Goergen
,
C. J.
,
2017
, “
In Vivo Multiscale and Spatially-Dependent Biomechanics Reveals Differential Strain Transfer Hierarchy in Skeletal Muscle
,”
ACS Biomater. Sci. Eng.
,
3
(
11
), pp.
2798
2805
.10.1021/acsbiomaterials.6b00772
9.
Boyle
,
J. J.
,
Soepriatna
,
A.
,
Damen
,
F.
,
Rowe
,
R. A.
,
Pless
,
R. B.
,
Kovacs
,
A.
,
Goergen
,
C. J.
,
Thomopoulos
,
S.
, and
Genin
,
G. M.
,
2019
, “
Regularization-Free Strain Mapping in Three Dimensions, With Application to Cardiac Ultrasound
,”
ASME J. Biomech. Eng.
,
141
(
1
), p.
011010
.10.1115/1.4041576
10.
Cebull
,
H. L.
,
Soepriatna
,
A. H.
,
Boyle
,
J. J.
,
Rothenberger
,
S. M.
, and
Goergen
,
C. J.
,
2019
, “
Strain Mapping From Four-Dimensional Ultrasound Reveals Complex Remodeling in Dissecting Murine Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
141
(
6
), p.
060907
.10.1115/1.4043075
11.
O'Connell
,
G. D.
,
Malhotra
,
N. R.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2011
, “
The Effect of Nucleotomy and the Dependence of Degeneration of Human Intervertebral Disc Strain in Axial Compression
,”
Spine
,
36
(
21
), pp.
1765
1771
.10.1097/BRS.0b013e318216752f
12.
O'Connell
,
G. D.
,
Johannessen
,
W.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2007
, “
Human Internal Disc Strains in Axial Compression Measured Noninvasively Using Magnetic Resonance Imaging
,”
Spine
,
32
(
25
), pp.
2860
2868
.10.1097/BRS.0b013e31815b75fb
13.
Tavana
,
S.
,
Davis
,
B.
,
Canali
,
I.
,
Scott
,
K.
,
Leong
,
J. J. H.
,
Freedman
,
B. A.
, and
Newell
,
N.
,
2023
, “
A Novel Tool to Quantify In Vivo Lumbar Spine Kinematics and 3D Intervertebral Disc Strains Using Clinical MRI
,”
J. Mech. Behav. Biomed. Mater.
,
140
, p.
105730
.10.1016/j.jmbbm.2023.105730
14.
O'Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2007
, “
Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry
,”
Spine
,
32
(
3
), pp.
328
333
.10.1097/01.brs.0000253961.40910.c1
15.
Vergari
,
C.
,
Dubois
,
G.
,
Vialle
,
R.
,
Gennisson
,
J.-L.
,
Tanter
,
M.
,
Dubousset
,
J.
,
Rouch
,
P.
, and
Skalli
,
W.
,
2016
, “
Lumbar Annulus Fibrosus Biomechanical Characterization in Healthy Children by Ultrasound Shear Wave Elastography
,”
Eur. Radiol.
,
26
(
4
), pp.
1213
1217
.10.1007/s00330-015-3911-0
16.
Vergari
,
C.
,
Rouch
,
P.
,
Dubois
,
G.
,
Bonneau
,
D.
,
Dubousset
,
J.
,
Tanter
,
M.
,
Gennisson
,
J.-L.
, and
Skalli
,
W.
,
2014
, “
Non-Invasive Biomechanical Characterization of Intervertebral Discs by Shear Wave Ultrasound Elastography: A Feasibility Study
,”
Eur. Radiol.
,
24
(
12
), pp.
3210
3216
.10.1007/s00330-014-3382-8
17.
Johnson
,
S.
,
Mcnally
,
D.
, and
Halliwell
,
M.
,
2002
, “
High-Frequency Ultrasound Imaging of the Intervertebral Disc
,”
Ultrasound Med. Biol.
,
28
(
7
), pp.
939
947
.10.1016/S0301-5629(02)00530-6
18.
Azarnoosh
,
M.
,
Stoffel
,
M.
,
Quack
,
V.
,
Betsch
,
M.
,
Rath
,
B.
,
Tingart
,
M.
, and
Markert
,
B.
,
2017
, “
A Comparative Study of Mechanical Properties of Fresh and Frozen-Thawed Porcine Intervertebral Discs in a Bioreactor Environment
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
169
177
.10.1016/j.jmbbm.2016.12.010
19.
Wilke
,
H.-J.
,
Wenger
,
K.
, and
Claes
,
L.
,
1998
, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of In Vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
,
7
(
2
), pp.
148
154
.10.1007/s005860050045
20.
Fan
,
L.
,
Zhang
,
F.
,
Fan
,
H.
, and
Zhang
,
C.
,
2019
, “
Brief Review of Image Denoising Techniques
,”
Visual Comput. Ind., Biomed. Art
,
2
(
1
), p.
7
.10.1186/s42492-019-0016-7
21.
Rogowska
,
J.
,
2000
, “
Overview and Fundamentals of Medical Image Segmentation
,”
Handbook of Medical Imaging
,
I. N.
Bankman
, ed.,
Biomedical Engineering, Academic Press
,
San Diego
, CA, pp.
69
85
.
22.
Kumar Pal
,
S.
,
Bhardwaj
,
A.
, and
Shukla
,
A.
,
2021
, “
A Review on Despeckling Filters in Ultrasound Images for Speckle Noise Reduction
,” 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (
ICACITE
), Greater Noida, India, Mar. 4–5, pp.
973
978
.10.1109/ICACITE51222.2021.9404638
23.
Boyle
,
J. J.
,
Kume
,
M.
,
Wyczalkowski
,
M. A.
,
Taber
,
L. A.
,
Pless
,
R. B.
,
Xia
,
Y.
,
Genin
,
G. M.
, and
Thomopoulos
,
S.
,
2014
, “
Simple and Accurate Methods for Quantifying Deformation, Disruption, and Development in Biological Tissues
,”
J. R. Soc. Interface
,
11
(
100
), p.
20140685
.10.1098/rsif.2014.0685
24.
Huff
,
R. D.
,
Houghton
,
F.
,
Earl
,
C. C.
,
Ghajar-Rahimi
,
E.
,
Dogra
,
I.
,
Yu
,
D.
,
Harris-Adamson
,
C.
,
Goergen
,
C. J.
, and
O'Connell
,
G. D.
,
2024
, “
Deep Learning Enables Accurate Soft Tissue Tendon Deformation Estimation In Vivo Via Ultrasound Imaging
,”
Sci. Rep.
,
14
(
1
), p.
18401
.10.1038/s41598-024-68875-w
25.
Tavana
,
S.
,
Masouros
,
S. D.
,
Baxan
,
N.
,
Freedman
,
B. A.
,
Hansen
,
U. N.
, and
Newell
,
N.
,
2021
, “
The Effect of Degeneration on Internal Strains and the Mechanism of Failure in Human Intervertebral Discs Analyzed Using Digital Volume Correlation (DVC) and Ultra-High Field MRI
,”
Front. Bioeng. Biotechnol.
,
8
, p.
610907
.10.3389/fbioe.2020.610907
26.
Walk
,
R. E.
, and
Tang
,
S. Y.
,
2019
, “
In Vivo Contrast-Enhanced micro-CT for the Monitoring of Mouse Thoracic, Lumbar, and Coccygeal Intervertebral Discs
,”
JOR Spine
,
2
(
2
), p.
e1058
.10.1002/jsp2.1058
27.
Costi
,
J. J.
,
Ledet
,
E. H.
, and
O'Connell
,
G. D.
,
2021
, “
Spine Biomechanical Testing Methodologies: The Controversy of Consensus versus Scientific Evidence
,”
JOR Spine
,
4
(
1
), p.
e1138
.10.1002/jsp2.1138
28.
Pfirrmann
,
C. W.
,
Metzdorf
,
A.
,
Zanetti
,
M.
,
Hodler
,
J.
, and
Boos
,
N.
,
2001
, “
Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration
,”
Spine
,
26
(
17
), pp.
1873
1878
.10.1097/00007632-200109010-00011
29.
Martin
,
J. T.
,
Oldweiler
,
A. B.
,
Spritzer
,
C. E.
,
Soher
,
B. J.
,
Erickson
,
M. M.
,
Goode
,
A. P.
, and
DeFrate
,
L. E.
,
2018
, “
A Magnetic Resonance Imaging Framework for Quantifying Intervertebral Disc Deformation In Vivo: Reliability and Application to Diurnal Variations in Lumbar Disc Shape
,”
J. Biomech.
,
71
, pp.
291
295
.10.1016/j.jbiomech.2018.01.045
30.
Wilson
,
R. L.
,
Bowen
,
L.
,
Kim
,
W.
,
Cai
,
L.
,
Schneider
,
S. E.
,
Nauman
,
E. A.
, and
Neu
,
C. P.
,
2021
, “
In Vivo Intervertebral Disc Deformation: Intratissue Strain Patterns Within Adjacent Discs During Flexion–Extension
,”
Sci. Rep.
,
11
(
1
), p.
729
.10.1038/s41598-020-77577-y
31.
Nguyen
,
A. M.
,
Johannessen
,
W.
,
Yoder
,
J. H.
,
Wheaton
,
A. J.
,
Vresilovic
,
E. J.
,
Borthakur
,
A.
, and
Elliott
,
D. M.
,
2008
, “
Noninvasive Quantification of Human Nucleus Pulposus Pressure With Use of T1ρ-Weighted Magnetic Resonance Imaging
,”
J. Bone Jt. Surg. Am.
,
90
(
4
), pp.
796
802
.10.2106/JBJS.G.00667
32.
Soepriatna
,
A. H.
,
Yeh
,
A. K.
,
Clifford
,
A. D.
,
Bezci
,
S. E.
,
O'Connell
,
G. D.
, and
Goergen
,
C. J.
,
2019
, “
Three-Dimensional Myocardial Strain Correlates With Murine Left Ventricular Remodelling Severity Post-Infarction
,”
J. R. Soc., Interface
,
16
(
160
), p.
20190570
.10.1098/rsif.2019.0570
33.
Pichl
,
E.
, and
Rabitsch
,
H.
,
2013
, “
Life-Long Accumulation of 137Cs and 40K in the Vertebral Column of a Cow
,”
J. Environ. Radioact.
,
115
, pp.
157
167
.10.1016/j.jenvrad.2012.05.015
34.
Sassack
,
B.
, and
Carrier
,
J. D.
,
2024
, “
Anatomy, Back, Lumbar Spine
,” StatPearls,
StatPearls Publishing
,
Treasure Island, FL
, accessed June 9, 2024, http://www.ncbi.nlm.nih.gov/books/NBK557616/
35.
Lim
,
S.
,
Huff
,
R. D.
,
Veres
,
J. E.
,
Satish
,
D.
, and
O'Connell
,
G. D.
,
2022
, “
Disc Geometry Measurement Methods Affect Reported Compressive Mechanics by Up to 65%
,”
JOR Spine
,
5
(
3
), p.
e1214
.10.1002/jsp2.1214
36.
Newell
,
N.
,
Rivera Tapia
,
D.
,
Rahman
,
T.
,
Lim
,
S.
,
O'Connell
,
G. D.
, and
Holsgrove
,
T. P.
,
2020
, “
Influence of Testing Environment and Loading Rate on Intervertebral Disc Compressive Mechanics: An Assessment of Repeatability at Three Different Laboratories
,”
JOR Spine
,
3
(
3
), p.
e21110
.10.1002/jsp2.1110
37.
Sakçı
,
Z.
,
Önen
,
M. R.
,
Fidan
,
E.
,
Yaşar
,
Y.
,
Uluğ
,
H.
, and
Naderi
,
S.
,
2018
, “
Radiologic Anatomy of the Lumbar Interlaminar Window and Surgical Considerations for Lumbar Interlaminar Endoscopic and Microsurgical Disc Surgery
,”
World Neurosurg.
,
115
, pp.
e22
e26
.10.1016/j.wneu.2018.03.049
38.
McNally
,
D. S.
,
Naish
,
C.
, and
Halliwell
,
M.
,
2000
, “
Intervertebral Disc Structure: Observation by a Novel Use of Ultrasound Imaging
,”
Ultrasound Med. Biol.
,
26
(
5
), pp.
751
758
.10.1016/S0301-5629(00)00209-X
39.
Uppot
,
R. N.
,
2018
, “
Technical Challenges of Imaging & Image-Guided Interventions in Obese Patients
,”
Br. J. Radiol.
,
91
(
1089
), p.
20170931
.10.1259/bjr.20170931
You do not currently have access to this content.