Abstract

The force produced by a muscle depends on its contractile history, yet human movement simulations typically employ muscle models that define the force–length relationship from measurements of fiber force during isometric contractions. In these muscle models, the total force–length curve can have a negative slope at fiber lengths greater than the fiber length at which peak isometric force is produced. This region of negative stiffness can cause numerical instability in simulations. Experiments have found that the steady-state force in a muscle fiber following active stretching is greater than the force produced during a purely isometric contraction. This behavior is called residual force enhancement. We present a constitutive model that exhibits force enhancement, implemented as a hyperelastic material in the febio finite element software. There is no consensus on the mechanisms responsible for force enhancement; we adopt the assumption that the passive fiber force depends on the sarcomere length at the instant that the muscle is activated above a threshold. We demonstrate the numerical stability of our model using an eigenvalue analysis and by simulating a muscle whose fibers are of different lengths. We then use a three-dimensional muscle geometry to verify the effect of force enhancement on the development of stress and the distribution of fiber lengths. Our proposed muscle material model is one of the few models available that exhibits force enhancement and is suitable for simulations of active lengthening. We provide our implementation in febio so that others can reproduce and extend our results.

References

1.
Dao
,
T. T.
, and
Tho
,
M.-C. H. B.
,
2018
, “
A Systematic Review of Continuum Modeling of Skeletal Muscles: Current Trends, Limitations, and Recommendations
,”
Appl. Bionics Biomech
.,
2018
, p.
7631818
.
2.
Lilja
,
M.
,
Johansson
,
S.
, and
Öberg
,
T.
,
1999
, “
Relaxed Versus Activated Stump Muscles During Casting for Trans-Tibial Prostheses
,”
Prosthet. Orthot. Int.
,
23
(
1
), pp.
13
20
.10.3109/03093649909071606
3.
Cagle
,
J. C.
,
Reinhall
,
P. G.
,
Allyn
,
K. J.
,
McLean
,
J.
,
Hinrichs
,
P.
,
Hafner
,
B. J.
, and
Sanders
,
J. E.
,
2018
, “
A Finite Element Model to Assess Transtibial Prosthetic Sockets With Elastomeric Liners
,”
Med. Biol. Eng. Comput.
,
56
(
7
), pp.
1227
1240
.10.1007/s11517-017-1758-z
4.
Avril
,
S.
,
Bouten
,
L.
,
Dubuis
,
L.
,
Drapier
,
S.
, and
Pouget
,
J.-F.
,
2010
, “
Mixed Experimental and Numerical Approach for Characterizing the Biomechanical Response of the Human Leg Under Elastic Compression
,”
ASME J. Biomech. Eng.
,
132
(
3
), p.
031006
.10.1115/1.4000967
5.
Zeng
,
W.
,
Hume
,
D. R.
,
Lu
,
Y.
,
Fitzpatrick
,
C. K.
,
Babcock
,
C.
,
Myers
,
C. A.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2023
, “
Modeling of Active Skeletal Muscles: A 3D Continuum Approach Incorporating Multiple Muscle Interactions
,”
Front. Bioeng. Biotechnol.
,
11
, p.
1153692
.10.3389/fbioe.2023.1153692
6.
Yeo
,
S.-H.
,
Verheul
,
J.
,
Herzog
,
W.
, and
Sueda
,
S.
,
2023
, “
Numerical Instability of Hill-Type Muscle Models
,”
J. R. Soc. Interface
,
20
(
199
), p.
20220430
.10.1098/rsif.2022.0430
7.
Uchida
,
T. K.
, and
Delp
,
S. L.
,
2021
,
Biomechanics of Movement: The Science of Sports, Robotics, and Rehabilitation
,
The MIT Press
,
Cambridge, MA
.
8.
Siebert
,
T.
, and
Rode
,
C.
,
2014
, “
Computational Modeling of Muscle Biomechanics
,”
Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System
,
Z.
Jin
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
173
204
.
9.
Millard
,
M.
,
Uchida
,
T.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021005
.10.1115/1.4023390
10.
Giantesio
,
G.
,
Musesti
,
A.
, and
Riccobelli
,
D.
,
2019
, “
A Comparison Between Active Strain and Active Stress in Transversely Isotropic Hyperelastic Materials
,”
J. Elast.
,
137
(
1
), pp.
63
82
.10.1007/s10659-018-9708-z
11.
Klotz
,
T.
,
Bleiler
,
C.
, and
Röhrle
,
O.
,
2021
, “
A Physiology-Guided Classification of Active-Stress and Active-Strain Approaches for Continuum-Mechanical Modeling of Skeletal Muscle Tissue
,”
Front. Physiol.
,
12
, p.
685531
.10.3389/fphys.2021.685531
12.
Rode
,
C.
,
Siebert
,
T.
,
Herzog
,
W.
, and
Blickhan
,
R.
,
2009
, “
The Effects of Parallel and Series Elastic Components on the Active Cat Soleus Force-Length Relationship
,”
J. Mech. Med. Biol.
,
9
(
1
), pp.
105
122
.10.1142/S0219519409002870
13.
Allinger
,
T. L.
,
Epstein
,
M.
, and
Herzog
,
W.
,
1996
, “
Stability of Muscle Fibers on the Descending Limb of the Force-Length Relation. A Theoretical Consideration
,”
J. Biomech.
,
29
(
5
), pp.
627
633
.10.1016/0021-9290(95)00087-9
14.
Zahalak
,
G. I.
,
1997
, “
Can Muscle Fibers Be Stable on the Descending Limbs of Their Sarcomere Length-Tension Relations?
,”
J. Biomech.
,
30
(
11–12
), pp.
1179
1182
.10.1016/S0021-9290(97)00079-1
15.
Ting
,
T. C. T.
,
1996
, “
Positive Definiteness of Anisotropic Elastic Constants
,”
Math. Mech. Solids
,
1
(
3
), pp.
301
314
.10.1177/108128659600100302
16.
Heidlauf
,
T.
,
Klotz
,
T.
,
Rode
,
C.
,
Siebert
,
T.
, and
Röhrle
,
O.
,
2017
, “
A Continuum-Mechanical Skeletal Muscle Model Including Actin-Titin Interaction Predicts Stable Contractions on the Descending Limb of the Force-Length Relation
,”
PLoS Comput. Biol.
,
13
(
10
), p.
e1005773
.10.1371/journal.pcbi.1005773
17.
Joumaa
,
V.
,
Leonard
,
T. R.
, and
Herzog
,
W.
,
2008
, “
Residual Force Enhancement in Myofibrils and Sarcomeres
,”
Proc. R. Soc. Lond. B Biol. Sci.
,
275
(
1641
), pp.
1411
1419
.10.1098/rspb.2008.0142
18.
Leonard
,
T. R.
,
DuVall
,
M.
, and
Herzog
,
W.
,
2010
, “
Force Enhancement Following Stretch in a Single Sarcomere
,”
Am. J. Physiol. Cell Physiol.
,
299
(
6
), pp.
C1398
C1401
.10.1152/ajpcell.00222.2010
19.
Telley
,
I. A.
,
Stehle
,
R.
,
Ranatunga
,
K. W.
,
Pfitzer
,
G.
,
Stüssi
,
E.
, and
Denoth
,
J.
,
2006
, “
Dynamic Behaviour of Half-Sarcomeres During and After Stretch in Activated Rabbit Psoas Myofibrils: Sarcomere Asymmetry but No ‘Sarcomere Popping’
,”
J. Physiol.
,
573
(
1
), pp.
173
185
.10.1113/jphysiol.2006.105809
20.
Joumaa
,
V.
,
Rassier
,
D. E.
,
Leonard
,
T. R.
, and
Herzog
,
W.
,
2007
, “
Passive Force Enhancement in Single Myofibrils
,”
Pflugers Arch.
,
455
(
2
), pp.
367
371
.10.1007/s00424-007-0287-2
21.
Lee
,
E.-J.
, and
Herzog
,
W.
,
2008
, “
Residual Force Enhancement Exceeds the Isometric Force at Optimal Sarcomere Length for Optimized Stretch Conditions
,”
J. Appl. Physiol.
,
105
(
2
), pp.
457
462
.10.1152/japplphysiol.01109.2006
22.
Tomalka
,
A.
,
Rode
,
C.
,
Schumacher
,
J.
, and
Siebert
,
T.
,
2017
, “
The Active Force–Length Relationship is Invisible During Extensive Eccentric Contractions in Skinned Skeletal Muscle Fibres
,”
Proc. R. Soc. Lond. B Biol. Sci.
,
284
(
1854
), p.
20162497
.10.1098/rspb.2016.2497
23.
Abbott
,
B. C.
, and
Aubert
,
X. M.
,
1952
, “
The Force Exerted by Active Striated Muscle During and After Change of Length
,”
J. Physiol.
,
117
(
1
), pp.
77
86
.10.1113/jphysiol.1952.sp004733
24.
Herzog
,
W.
, and
Leonard
,
T. R.
,
2002
, “
Force Enhancement Following Stretching of Skeletal Muscle: A New Mechanism
,”
J. Exp. Biol.
,
205
(
9
), pp.
1275
1283
.10.1242/jeb.205.9.1275
25.
Leonard
,
T. R.
, and
Herzog
,
W.
,
2010
, “
Regulation of Muscle Force in the Absence of Actin-Myosin-Based Cross-Bridge Interaction
,”
Am. J. Physiol. Cell Physiol.
,
299
(
1
), pp.
C14
C20
.10.1152/ajpcell.00049.2010
26.
Siebert
,
T.
,
Leichsenring
,
K.
,
Rode
,
C.
,
Wick
,
C.
,
Stutzig
,
N.
,
Schubert
,
H.
,
Blickhan
,
R.
, and
Böl
,
M.
,
2015
, “
Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies
,”
PLoS One
,
10
(
6
), p.
e0130985
.10.1371/journal.pone.0130985
27.
Peterson
,
D. R.
,
Rassier
,
D. E.
, and
Herzog
,
W.
,
2004
, “
Force Enhancement in Single Skeletal Muscle Fibres on the Ascending Limb of the Force–Length Relationship
,”
J. Exp. Biol.
,
207
(
16
), pp.
2787
2791
.10.1242/jeb.01095
28.
Siebert
,
T.
,
Kurch
,
D.
,
Blickhan
,
R.
, and
Stutzig
,
N.
,
2016
, “
Does Weightlifting Increase Residual Force Enhancement?
,”
J. Biomech.
,
49
(
10
), pp.
2047
2052
.10.1016/j.jbiomech.2016.05.017
29.
Herzog
,
W.
,
2017
, “
Skeletal Muscle Mechanics: Questions, Problems and Possible Solutions
,”
J. Neuroeng. Rehabil.
,
14
(
1
), p.
98
.10.1186/s12984-017-0310-6
30.
Stronczek
,
C.
,
Lange
,
S.
,
Bullard
,
B.
,
Wolniak
,
S.
,
Börgeson
,
E.
,
Mayans
,
O.
, and
Fleming
,
J. R.
,
2021
, “
The N2A Region of Titin Has a Unique Structural Configuration
,”
J. Gen. Physiol.
,
153
(
7
), p.
e202012766
.10.1085/jgp.202012766
31.
Granzier
,
H.
, and
Labeit
,
S.
,
2007
, “
Structure–Function Relations of the Giant Elastic Protein Titin in Striated and Smooth Muscle Cells
,”
Muscle Nerve
,
36
(
6
), pp.
740
755
.10.1002/mus.20886
32.
Labeit
,
D.
,
Watanabe
,
K.
,
Witt
,
C.
,
Fujita
,
H.
,
Wu
,
Y.
,
Lahmers
,
S.
,
Funck
,
T.
,
Labeit
,
S.
, and
Granzier
,
H.
,
2003
, “
Calcium-Dependent Molecular Spring Elements in the Giant Protein Titin
,”
Proc. Natl. Acad. Sci. U. S. A.
,
100
(
23
), pp.
13716
13721
.10.1073/pnas.2235652100
33.
Herzog
,
W.
,
Schappacher
,
G.
,
DuVall
,
M.
,
Leonard
,
T. R.
, and
Herzog
,
J. A.
,
2016
, “
Residual Force Enhancement Following Eccentric Contractions: A New Mechanism Involving Titin
,”
Physiol.
,
31
(
4
), pp.
300
312
.10.1152/physiol.00049.2014
34.
Herzog
,
W.
,
Powers
,
K.
,
Johnston
,
K.
, and
Duvall
,
M.
,
2015
, “
A New Paradigm for Muscle Contraction
,”
Front. Physiol.
,
6
, p.
174
.10.3389/fphys.2015.00174
35.
Rode
,
C.
,
Siebert
,
T.
, and
Blickhan
,
R.
,
2009
, “
Titin-Induced Force Enhancement and Force Depression: A ‘Sticky-Spring’ Mechanism in Muscle Contractions?
,”
J. Theor. Biol.
,
259
(
2
), pp.
350
360
.10.1016/j.jtbi.2009.03.015
36.
Nishikawa
,
K. C.
,
Monroy
,
J. A.
,
Uyeno
,
T. E.
,
Yeo
,
S. H.
,
Pai
,
D. K.
, and
Lindstedt
,
S. L.
,
2012
, “
Is Titin a ‘Winding Filament’? A New Twist on Muscle Contraction
,”
Proc. R. Soc. Lond. B Biol. Sci.
,
279
(
1730
), pp.
981
990
.10.1098/rspb.2011.1304
37.
Schappacher-Tilp
,
G.
,
Leonard
,
T.
,
Desch
,
G.
, and
Herzog
,
W.
,
2015
, “
A Novel Three-Filament Model of Force Generation in Eccentric Contraction of Skeletal Muscles
,”
PLoS One
,
10
(
3
), p.
e0117634
.10.1371/journal.pone.0117634
38.
Millard
,
M.
,
Franklin
,
D. W.
, and
Herzog
,
W.
,
2024
, “
A Three Filament Mechanistic Model of Musculotendon Force and Impedance
,”
eLife
,
12
, p.
RP88344
.10.7554/eLife.88344
39.
Nishikawa
,
K.
,
2020
, “
Titin: A Tunable Spring in Active Muscle
,”
Physiology
,
35
(
3
), pp.
209
217
.10.1152/physiol.00036.2019
40.
Herzog
,
W.
,
2019
, “
Passive Force Enhancement in Striated Muscle
,”
J. Appl. Physiol.
,
126
(
6
), pp.
1782
1789
.10.1152/japplphysiol.00676.2018
41.
Lemos
,
R.
,
Epstein
,
M.
,
Herzog
,
W.
, and
Wyvill
,
B.
,
2001
, “
Realistic Skeletal Muscle Deformation Using Finite Element Analysis
,”
Proceedings of XIV Brazilian Symposium on Computer Graphics and Image Processing
, Florianopolis, Brazil, Oct. 15–18, pp.
192
199
.10.1109/SIBGRAPI.2001.963055
42.
Seydewitz
,
R.
,
Siebert
,
T.
, and
Böl
,
M.
,
2019
, “
On a Three-Dimensional Constitutive Model for History Effects in Skeletal Muscles
,”
Biomech. Model. Mechanobiol.
,
18
(
6
), pp.
1665
1681
.10.1007/s10237-019-01167-9
43.
Heidlauf
,
T.
,
Klotz
,
T.
,
Rode
,
C.
,
Altan
,
E.
,
Bleiler
,
C.
,
Siebert
,
T.
, and
Röhrle
,
O.
,
2016
, “
A Multi-Scale Continuum Model of Skeletal Muscle Mechanics Predicting Force Enhancement Based on Actin–Titin Interaction
,”
Biomech. Model. Mechanobiol.
,
15
(
6
), pp.
1423
1437
.10.1007/s10237-016-0772-7
44.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, UK
.
45.
Moo
,
E. K.
,
Leonard
,
T. R.
, and
Herzog
,
W.
,
2017
, “
In Vivo Sarcomere Lengths Become More Non-Uniform Upon Activation in Intact Whole Muscle
,”
Front. Physiol.
,
8
, p.
1015
.10.3389/fphys.2017.01015
46.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
47.
Blemker
,
S. S.
,
Pinsky
,
P. M.
, and
Delp
,
S. L.
,
2005
, “
A 3D Model of Muscle Reveals the Causes of Nonuniform Strains in the Biceps Brachii
,”
J. Biomech.
,
38
(
4
), pp.
657
665
.10.1016/j.jbiomech.2004.04.009
48.
Trombitás
,
K.
,
Greaser
,
M.
,
French
,
G.
, and
Granzier
,
H.
,
1998
, “
PEVK Extension of Human Soleus Muscle Titin Revealed by Immunolabeling With the Anti-Titin Antibody 9D10
,”
J. Struct. Biol.
,
122
(
1–2
), pp.
188
196
.10.1006/jsbi.1998.3984
49.
Tskhovrebova
,
L.
,
Trinick
,
J.
,
Sleep
,
J. A.
, and
Simmons
,
R. M.
,
1997
, “
Elasticity and Unfolding of Single Molecules of the Giant Muscle Protein Titin
,”
Nature
,
387
(
6630
), pp.
308
312
.10.1038/387308a0
50.
Rief
,
M.
,
Fernandez
,
J. M.
, and
Gaub
,
H. E.
,
1998
, “
Elastically Coupled Two-Level Systems as a Model for Biopolymer Extensibility
,”
Phys. Rev. Lett.
,
81
(
21
), pp.
4764
4767
.10.1103/PhysRevLett.81.4764
51.
Linke
,
W. A.
,
Ivemeyer
,
M.
,
Mundel
,
P.
,
Stockmeier
,
M. R.
, and
Kolmerer
,
B.
,
1998
, “
Nature of PEVK-Titin Elasticity in Skeletal Muscle
,”
Proc. Natl. Acad. Sci. U. S. A.
,
95
(
14
), pp.
8052
8057
.10.1073/pnas.95.14.8052
52.
Herzog
,
J. A.
,
Leonard
,
T. R.
,
Jinha
,
A.
, and
Herzog
,
W.
,
2012
, “
Are Titin Properties Reflected in Single Myofibrils?
,”
J. Biomech.
,
45
(
11
), pp.
1893
1899
.10.1016/j.jbiomech.2012.05.021
53.
Schappacher-Tilp
,
G.
,
Leonard
,
T.
,
Desch
,
G.
, and
Herzog
,
W.
,
2016
, “
Computing Average Passive Forces in Sarcomeres in Length-Ramp Simulations
,”
PLoS Comput. Biol.
,
12
(
6
), p.
e1004904
.10.1371/journal.pcbi.1004904
54.
Li
,
H.
,
Linke
,
W. A.
,
Oberhauser
,
A. F.
,
Carrion-Vazquez
,
M.
,
Kerkvliet
,
J. G.
,
Lu
,
H.
,
Marszalek
,
P. E.
, and
Fernandez
,
J. M.
,
2002
, “
Reverse Engineering of the Giant Muscle Protein Titin
,”
Nature
,
418
(
6901
), pp.
998
1002
.10.1038/nature00938
55.
Prado
,
L. G.
,
Makarenko
,
I.
,
Andresen
,
C.
,
Krüger
,
M.
,
Opitz
,
C. A.
, and
Linke
,
W. A.
,
2005
, “
Isoform Diversity of Giant Proteins in Relation to Passive and Active Contractile Properties of Rabbit Skeletal Muscles
,”
J. Gen. Physiol.
,
126
(
5
), pp.
461
480
.10.1085/jgp.200509364
56.
Joumaa
,
V.
,
Rassier
,
D. E.
,
Leonard
,
T. R.
, and
Herzog
,
W.
,
2008
, “
The Origin of Passive Force Enhancement in Skeletal Muscle
,”
Am. J. Physiol. Cell Physiol.
,
294
(
1
), pp.
C74
C78
.10.1152/ajpcell.00218.2007
57.
Dalton
,
B. H.
,
Contento
,
V. S.
, and
Power
,
G. A.
,
2018
, “
Residual Force Enhancement During Submaximal and Maximal Effort Contractions of the Plantar Flexors Across Knee Angle
,”
J. Biomech.
,
78
, pp.
70
76
.10.1016/j.jbiomech.2018.07.019
58.
Oskouei
,
A. E.
, and
Herzog
,
W.
,
2005
, “
Observations on Force Enhancement in Submaximal Voluntary Contractions of Human Adductor Pollicis Muscle
,”
J. Appl. Physiol.
,
98
(
6
), pp.
2087
2095
.10.1152/japplphysiol.01217.2004
59.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.https://pubmed.ncbi.nlm.nih.gov/2676342/
60.
Ehret
,
A. E.
,
Böl
,
M.
, and
Itskov
,
M.
,
2011
, “
A Continuum Constitutive Model for the Active Behaviour of Skeletal Muscle
,”
J. Mech. Phys. Solids
,
59
(
3
), pp.
625
636
.10.1016/j.jmps.2010.12.008
61.
Sampaio de Oliveira
,
M. L.
, and
Uchida
,
T. K.
,
2023
, “
Muscle Constitutive Model With a Tangent Modulus Approximation: Ansys Implementation and Verification
,”
ASME J. Biomech. Eng.
,
145
(
7
), p.
071002
.10.1115/1.4056948
62.
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Seth
,
A.
,
Rajagopal
,
A.
, and
Delp
,
S. L.
,
2015
, “
Is my Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020905
.10.1115/1.4029304
63.
Mehrabadi
,
M. M.
, and
Cowin
,
S. C.
,
1990
, “
Eigentensors of Linear Anisotropic Elastic Materials
,”
Q. J. Mech. Appl. Math.
,
43
(
1
), pp.
15
41
.10.1093/qjmam/43.1.15
64.
Böl
,
M.
, and
Reese
,
S.
,
2008
, “
Micromechanical Modelling of Skeletal Muscles Based on the Finite Element Method
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
489
504
.10.1080/10255840701771750
65.
Eng
,
C. M.
,
Smallwood
,
L. H.
,
Rainiero
,
M. P.
,
Lahey
,
M.
,
Ward
,
S. R.
, and
Lieber
,
R. L.
,
2008
, “
Scaling of Muscle Architecture and Fiber Types in the Rat Hindlimb
,”
J. Exp. Biol.
,
211
(
14
), pp.
2336
2345
.10.1242/jeb.017640
66.
Chagnon
,
G.
,
Rebouah
,
M.
, and
Favier
,
D.
,
2015
, “
Hyperelastic Energy Densities for Soft Biological Tissues: A Review
,”
J. Elast.
,
120
(
2
), pp.
129
160
.10.1007/s10659-014-9508-z
67.
López Jiménez
,
F.
,
2014
, “
Modeling of Soft Composites Under Three-Dimensional Loading
,”
Compos. B: Eng.
,
59
, pp.
173
180
.10.1016/j.compositesb.2013.11.020
68.
Spyrou
,
L. A.
,
Agoras
,
M.
, and
Danas
,
K.
,
2017
, “
A Homogenization Model of the Voigt Type for Skeletal Muscle
,”
J. Theor. Biol.
,
414
, pp.
50
61
.10.1016/j.jtbi.2016.11.018
69.
McGowan
,
C. P.
,
Neptune
,
R. R.
, and
Herzog
,
W.
,
2010
, “
A Phenomenological Model and Validation of Shortening-Induced Force Depression During Muscle Contractions
,”
J. Biomech.
,
43
(
3
), pp.
449
454
.10.1016/j.jbiomech.2009.09.047
You do not currently have access to this content.