Abstract

We examined the sensitivity of internal tibial forces and moments during running to different subtalar/ankle moment constraints in a static optimization routine. Seventeen participants ran at 2.20, 3.33, and 4.17 ms−1 while force and motion data were collected. Ankle joint contact force was estimated using inverse-dynamics-based static optimization. Three sets of joint moment constraints were tested. All sets included the flexion–extension and abduction–adduction moments at the hip and the flexion–extension moment at the knee but differed in the constraints used at the subtalar/ankle: (1) flexion–extension at the ankle (Sag), (2) flexion–extension and inversion–eversion at ankle (Sag + Front), and (3) flexion–extension at the ankle and supination–pronation at the subtalar (Sag + SubT). Internal tibial forces and moments were quantified at the distal one-third of the tibia, by ensuring static equilibrium with applied forces and moments. No interaction was observed between running speed and constraint for internal tibial forces or moments. Sag + SubT resulted in larger internal mediolateral force (+41%), frontal (+79%), and transverse (+29%) plane moments, compared to Sag and Sag + Front. Internal axial force was greatest in Sag + Front, compared to Sag and Sag + SubT (+37%). Faster running speeds resulted in greater internal tibial forces and moments in all directions (≥+6%). Internal tibial forces and moments at the distal one-third of the tibia were sensitive to the subtalar and ankle joint moment constraints used in the static optimization routine, independent of running speed.

References

1.
Meardon
,
S. A.
,
Willson
,
J. D.
,
Gries
,
S. R.
,
Kernozek
,
T. W.
, and
Derrick
,
T. R.
,
2015
, “
Bone Stress in Runners With Tibial Stress Fracture
,”
Clin. Biomech.
,
30
(
9
), pp.
895
902
.10.1016/j.clinbiomech.2015.07.012
2.
Derrick
,
T. R.
,
Edwards
,
W. B.
,
Fellin
,
R. E.
, and
Seay
,
J. F.
,
2016
, “
An Integrative Modeling Approach for the Efficient Estimation of Cross Sectional Tibial Stresses During Locomotion
,”
J. Biomech.
,
49
(
3
), pp.
429
435
.10.1016/j.jbiomech.2016.01.003
3.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
The Prediction of Forces in Joint Structures: Distribution of Intersegmental Resultants
,”
Exercise Sport Sci. Rev.
,
9
(
1
), pp.
159
182
.https://pubmed.ncbi.nlm.nih.gov/6749521/
4.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
(
11
), pp.
793
801
.10.1016/0021-9290(81)90035-X
5.
Rice
,
H.
,
Weir
,
G.
,
Trudeau
,
M. B.
,
Meardon
,
S. A.
,
Derrick
,
T. R.
, and
Hamill
,
J.
,
2019
, “
Estimating Tibial Stress Throughout the Duration of a Treadmill Run
,”
Med. Sci. Sports Exercise
,
51
(
11
), pp.
2257
2264
.10.1249/MSS.0000000000002039
6.
Rice
,
H. M.
,
Kenny
,
M.
,
Ellison
,
M. A.
,
Fulford
,
J.
,
Meardon
,
S. A.
,
Derrick
,
T. R.
, and
Hamill
,
J.
,
2020
, “
Tibial Stress During Running Following a Repeated Calf-Raise Protocol
,”
Scand. J. Med. Sci. Sports
,
30
(
12
), pp.
2382
2389
.10.1111/sms.13794
7.
Meardon
,
S. A.
,
Derrick
,
T. R.
,
Willson
,
J. D.
,
Baggaley
,
M.
,
Steinbaker
,
C. R.
,
Marshall
,
M.
, and
Willy
,
R. W.
,
2021
, “
Peak and Per-Step Tibial Bone Stress During Walking and Running in Female and Male Recreational Runners
,”
Am. J. Sports Med.
,
49
(
8
), pp.
2227
2237
.10.1177/03635465211014854
8.
Haider
,
I. T.
,
Baggaley
,
M.
, and
Edwards
,
W. B.
,
2020
, “
Subject-Specific Finite Element Models of the Tibia With Realistic Boundary Conditions Predict Bending Deformations Consistent With In Vivo Measurement
,”
ASME J. Biomech. Eng.
,
142
(
2
), p.
021010
.10.1115/1.4044034
9.
McCullough
,
M. B. A.
,
Ringleb
,
S. I.
,
Arai
,
K.
,
Kitaoka
,
H. B.
, and
Kaufman
,
K. R.
,
2011
, “
Moment Arms of the Ankle Throughout the Range of Motion in Three Planes
,”
Foot Ankle Int.
,
32
(
3
), pp.
300
306
.10.3113/FAI.2011.0300
10.
Hintermann
,
B.
,
Nigg
,
B. M.
, and
Sommer
,
C.
,
1994
, “
Foot Movement and Tendon Excursion: An In Vitro Study
,”
Foot Ankle Int.
,
15
(
7
), pp.
386
395
.10.1177/107110079401500708
11.
Spoor
,
C. W.
,
van Leeuwen
,
J. L.
,
Meskers
,
C. G. M.
,
Titulaer
,
A. F.
, and
Huson
,
A.
,
1990
, “
Estimation of Instantaneous Moment Arms of Lower-Leg Muscles
,”
J. Biomech.
,
23
(
12
), pp.
1247
1259
.10.1016/0021-9290(90)90382-D
12.
Baggaley
,
M.
,
Derrick
,
T. R.
,
Vernillo
,
G.
,
Millet
,
G. Y.
, and
Edwards
,
W. B.
,
2022
, “
Internal Tibial Forces and Moments During Graded Running
,”
ASME J. Biomech. Eng.
,
144
(
1
), p.
011009
.10.1115/1.4051924
13.
de David
,
A. C.
,
Carpes
,
F. P.
, and
Stefanyshyn
,
D.
,
2015
, “
Effects of Changing Speed on Knee and Ankle Joint Load During Walking and Running
,”
J. Sports Sci.
,
33
(
4
), pp.
391
397
.10.1080/02640414.2014.946074
14.
Vaughan
,
C. L.
,
Davis
,
B. L.
, and
O'Connor
,
J. C.
,
1999
,
Dynamics of Human Gait
, 2nd ed.,
Kihobo Publishers
, Cape Town, South Africa.
15.
Sheehan
,
F. T.
,
2010
, “
The Instantaneous Helical Axis of the Subtalar and Talocrural Joints: A Non-Invasive In Vivo Dynamic Study
,”
J. Foot Ankle Res.
,
3
, p.
13
.10.1186/1757-1146-3-13
16.
Inman
,
V. T.
,
1976
,
The Joints of the Ankle
,
Williams Wilkins
,
Baltimore, MD
.
17.
Edwards
,
W. B.
,
Taylor
,
D.
,
Rudolphi
,
T. J.
,
Gillette
,
J. C.
, and
Derrick
,
T. R.
,
2010
, “
Effects of Running Speed on a Probabilistic Stress Fracture Model
,”
Clin. Biomech.
,
25
(
4
), pp.
372
377
.10.1016/j.clinbiomech.2010.01.001
18.
Edwards
,
W. B.
,
Troy
,
K. L.
, and
Derrick
,
T. R.
,
2011
, “
On the Filtering of Intersegmental Loads During Running
,”
Gait Posture
,
34
(
3
), pp.
435
438
.10.1016/j.gaitpost.2011.06.006
19.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
20.
Glitsch
,
U.
, and
Baumann
,
W.
,
1997
, “
The Three-Dimensional Determination of Internal Loads in the Lower Extremity
,”
J. Biomech.
,
30
(
11–12
), pp.
1123
1131
.10.1016/S0021-9290(97)00089-4
21.
Bates
,
D.
,
Mächler
,
M.
,
Bolker
,
B.
, and
Walker
,
S.
,
2015
, “
Fitting Linear Mixed-Effects Models Using lme4
,”
J. Stat. Software
, 67(1), pp. 1–48.10.18637/jss.v067.i01
22.
Kuznetsova
,
A.
,
Brockhoff
,
P. B.
, and
Christensen
,
R. H. B.
,
2017
, “
lmerTest Package: Tests in Linear Mixed Effects Models
,”
J. Stat. Software
,
82
, pp.
1
26
.10.18637/jss.v082.i13
23.
Bartoń
,
K.
,
2020
, “
MuMIn: Multi-Model Inference, R Package Version 1.43.17
”.https://CRAN.Rproject.org/package=MuMIn
24.
Russell
, V.
L.
,
2021
, “
emmeans: Estimated Marginal Means, aka Least-Squares Means, R Package Version 1.7.1-1
”.https://CRAN.Rproject.org/package=emmeans
25.
Raikova
,
R. T.
, and
Prilutsky
,
B. I.
,
2001
, “
Sensitivity of Predicted Muscle Forces to Parameters of the Optimization-Based Human Leg Model Revealed by Analytical and Numerical Analyses
,”
J. Biomech.
,
34
(
10
), pp.
1243
1255
.10.1016/S0021-9290(01)00097-5
26.
Klein
,
P.
,
Mattys
,
S.
, and
Rooze
,
M.
,
1996
, “
Moment Arm Length Variations of Selected Muscles Acting on Talocrural and Subtalar Joints During Movement: An In Vitro Study
,”
J. Biomech.
,
29
(
1
), pp.
21
30
.10.1016/0021-9290(95)00025-9
27.
Piazza
,
S. J.
,
2005
, “
Mechanics of the Subtalar Joint and Its Function During Walking
,”
Foot Ankle Clin.
,
10
(
3
), pp.
425
442
.10.1016/j.fcl.2005.04.001
28.
Fukano
,
M.
,
Fukubayashi
,
T.
, and
Banks
,
S. A.
,
2018
, “
Sex Differences in Three-Dimensional Talocrural and Subtalar Joint Kinematics During Stance Phase in Healthy Young Adults
,”
Hum. Mov. Sci.
,
61
, pp.
117
125
.10.1016/j.humov.2018.06.003
29.
Roach
,
K. E.
,
Wang
,
B.
,
Kapron
,
A. L.
,
Fiorentino
,
N. M.
,
Saltzman
,
C. L.
, and
Foreman
,
K. B.
,
2016
, “
In Vivo Kinematics of the Tibiotalar and Subtalar Joints in Asymptomatic Subjects: A High-Speed Dual Fluoroscopy Study
,”
ASME J. Biomech. Eng.
,
138
(
9
), p.
091006
.10.1115/1.4034263
30.
Yang
,
P.-F.
,
Sanno
,
M.
,
Ganse
,
B.
,
Koy
,
T.
,
Brüggemann
,
G.-P.
,
Müller
,
L. P.
, and
Rittweger
,
J.
,
2014
, “
Torsion and Antero-Posterior Bending in the In Vivo Human Tibia Loading Regimes During Walking and Running
,”
PLoS One
,
9
(
4
), p.
e94525
.10.1371/journal.pone.0094525
You do not currently have access to this content.