Abstract

Vesicle exocytosis is a promising pathway for brain drug delivery through the blood-brain barrier to treat neurodegenerative diseases. In vesicle exocytosis, the membrane fusion process is initiated by the calcium sensor protein named synaptotagmin-like protein4-a (Slp4-a). Understanding conformational changes of Slp4-a during the prefusion stage of exocytosis will help to develop vesicle-based drug delivery to the brain. In this work, we use molecular dynamics (MD) simulations with a hybrid force field coupling united-atom protein model with MARTINI coarse-grained (CG) solvent to capture the conformational changes of Slp4-a during the prefusion stage. These hybrid coarse-grained simulations are more efficient than all-atom MD simulations and can capture protein interactions and conformational changes. Our simulation results show that the calcium ions play critical roles during the prefusion stage. Only one calcium ion can remain in each calcium-binding pocket of Slp4-a C2 domains. The C2B domain of calcium-unbound Slp4-a remains parallel to the endothelial membrane, while the C2B domain of calcium-bound Slp4-a rotates perpendicular to the endothelial membrane to approach the vesicular membrane. For the calcium-bound case, three Slp4-a proteins can effectively bend lipid membranes at the prefusion stage, which could later trigger lipid stalk between membranes. This work provides a better understanding how C2 domains of Slp4-a operate during vesicle exocytosis from an endothelial cell.

References

1.
Abbott
,
N. J.
,
Patabendige
,
A. A. K.
,
Dolman
,
D. E. M.
,
Yusof
,
S. R.
, and
Begley
,
D. J.
,
2010
, “
Structure and Function of the Blood-Brain Barrier
,”
Neurobiol. Dis.
,
37
(
1
), pp.
13
25
.10.1016/j.nbd.2009.07.030
2.
Kniesel
,
U.
, and
Wolburg
,
H.
,
2000
, “
Tight Junctions of the Blood-Brain Barrier
,”
Cell. Mol. Neurobiol.
,
20
(
1
), pp.
57
76
.10.1023/A:1006995910836
3.
Schulze
,
C.
, and
Firth
,
J. A.
,
1993
, “
Immunohistochemical Localization of Adherens Junction Components in Blood-Brain-Barrier Microvessels of the Rat
,”
J. Cell Sci.
,
104
(
3
), pp.
773
782
.10.1242/jcs.104.3.773
4.
Khan
,
A. I.
,
Liu
,
J.
, and
Dutta
,
P.
,
2018
, “
Iron Transport Kinetics Through Blood-Brain Barrier Endothelial Cells
,”
Biochim. Biophys. Acta (BBA)-Gen. Sub.
,
1862
(
5
), pp.
1168
1179
.10.1016/j.bbagen.2018.02.010
5.
Khan
,
A. I.
,
Liu
,
J.
, and
Dutta
,
P.
,
2020
, “
Bayesian Inference for Parameter Estimation in Lactoferrin-Mediated Iron Transport Across Blood-Brain Barrier
,”
Biochim. Biophys. Acta-Gen. Sub.
,
1864
(
3
), p.
129459
.10.1016/j.bbagen.2019.129459
6.
Xie
,
J. B.
,
Shen
,
Z. Y.
,
Anraku
,
Y.
,
Kataoka
,
K.
, and
Chen
,
X. Y.
,
2019
, “
Nanomaterial-Based Blood-Brain-Barrier (BBB) Crossing Strategies
,”
Biomaterials
,
224
, p.
119491
.10.1016/j.biomaterials.2019.119491
7.
Khan
,
A. I.
,
Lu
,
Q.
,
Du
,
D.
,
Lin
,
Y. H.
, and
Dutta
,
P.
,
2018
, “
Quantification of Kinetic Rate Constants for Transcytosis of Polymeric Nanoparticle Through Blood-Brain Barrier
,”
Biochim. Biophys. Acta-Gen. Sub.
,
1862
(
12
), pp.
2779
2787
.10.1016/j.bbagen.2018.08.020
8.
Ding
,
S. C.
,
Khan
,
A. I.
,
Cai
,
X. L.
,
Song
,
Y.
,
Lyu
,
Z. Y.
,
Du
,
D.
,
Dutta
,
P.
, and
Lin
,
Y. H.
,
2020
, “
Overcoming Blood-Brain Barrier Transport: Advances in Nanoparticle-Based Drug Delivery Strategies
,”
Mater. Today
,
37
, pp.
112
125
.10.1016/j.mattod.2020.02.001
9.
Pardridge
,
W. M.
,
2006
, “
Molecular Trojan Horses for Blood-Brain Barrier Drug Delivery
,”
Curr. Opin. Pharmacol.
,
6
(
5
), pp.
494
500
.10.1016/j.coph.2006.06.001
10.
Van Dinh
,
Q.
,
Liu
,
J.
, and
Dutta
,
P.
,
2020
, “
Effect of Calcium Ion on Synaptotagmin-Like Protein During Pre-Fusion of Vesicle for Exocytosis in Blood-Brain Barrier
,”
Biochem. Biophys. Rep.
,
24
, p.
100845
.10.1016/j.bbrep.2020.100845
11.
Deng
,
H.
,
Dutta
,
P.
, and
Liu
,
J.
,
2018
, “
Stochastic Simulations of Nanoparticle Internalization Through Transferrin Receptor Dependent Clathrin-Mediated Endocytosis
,”
Biochim. Biophys. Acta-Gen. Sub.
,
1862
(
9
), pp.
2104
2111
.10.1016/j.bbagen.2018.06.018
12.
Chang
,
J.
,
Jallouli
,
Y.
,
Kroubi
,
M.
,
Yuan
,
X. B.
,
Feng
,
W.
,
Kang
,
C. S.
,
Pu
,
P. Y.
, and
Betbeder
,
D.
,
2009
, “
Characterization of Endocytosis of Transferrin-Coated PLGA Nanoparticles by the Blood-Brain Barrier
,”
Int. J. Pharm.
,
379
(
2
), pp.
285
292
.10.1016/j.ijpharm.2009.04.035
13.
Mourik
,
M.
, and
Eikenboom
,
J.
,
2017
, “
Lifecycle of Weibel-Palade Bodies
,”
Hamostaseologie
,
37
(
01
), pp.
13
24
.10.5482/HAMO-16-07-0021
14.
Schillemans
,
M.
,
Karampini
,
E.
,
Kat
,
M.
, and
Bierings
,
R.
,
2019
, “
Exocytosis of Weibel-Palade Bodies: How to Unpack a Vascular Emergency Kit
,”
J. Thromb. Haemost.
,
17
(
1
), pp.
6
18
.10.1111/jth.14322
15.
Wang
,
J.
,
Takeuchi
,
T.
,
Yokota
,
H.
, and
Izumi
,
T.
,
1999
, “
Novel Rabphilin-3-Like Protein Associates With Insulin-Containing Granules in Pancreatic Beta Cells
,”
J. Biol. Chem.
,
274
(
40
), pp.
28542
28548
.10.1074/jbc.274.40.28542
16.
Nyenhuis
,
S. B.
,
Karandikar
,
N.
,
Kiessling
,
V.
,
Kreutzberger
,
A. J. B.
,
Thapa
,
A.
,
Liang
,
B. Y.
,
Tamm
,
L. K.
, and
Cafiso
,
D. S.
,
2021
, “
Conserved Arginine Residues in Synaptotagmin 1 Regulate Fusion Pore Expansion Through Membrane Contact
,”
Nat. Commun.
, 12(1), pp.
1
13
.10.1038/s41467-021-21090-x
17.
Zhou
,
Q. J.
,
Zhou
,
P.
,
Wang
,
A. L.
,
Wu
,
D.
,
Zhao
,
M. L.
,
Sudhof
,
T. C.
, and
Brunger
,
A. T.
,
2017
, “
The Primed SNARE-Complexin-Synaptotagmin Complex for Neuronal Exocytosis
,”
Nature
,
548
(
7668
), pp.
420
425
.10.1038/nature23484
18.
Gruget
,
C.
,
Bello
,
O.
,
Coleman
,
J.
,
Krishnakumar
,
S. S.
,
Perez
,
E.
,
Rothman
,
J. E.
,
Pincet
,
F.
, and
Donaldson
,
S. H.
,
2020
, “
Synaptotagmin-1 Membrane Binding is Driven by the C2B Domain and Assisted Cooperatively by the C2A Domain
,”
Sci. Rep.
,
10
(
1
), pp.
1
10
.10.1038/s41598-020-74923-y
19.
Rizo
,
J.
,
2018
, “
Mechanism of Neurotransmitter Release Coming Into Focus
,”
Prot. Sci.
,
27
(
8
), pp.
1364
1391
.10.1002/pro.3445
20.
Her
,
C.
,
Filoti
,
D. I.
,
McLean
,
M. A.
,
Sligar
,
S. G.
,
Ross
,
J. B. A.
,
Steele
,
H.
, and
Laue
,
T. M.
,
2016
, “
The Charge Properties of Phospholipid Nanodiscs
,”
Biophys. J.
,
111
(
5
), pp.
989
998
.10.1016/j.bpj.2016.06.041
21.
Lyakhova
,
T. A.
, and
Knight
,
J. D.
,
2014
, “
The C2 Domains of Granuphilin Are High-Affinity Sensors for Plasma Membrane Lipids
,”
Chem. Phys. Lipids
,
182
, pp.
29
37
.10.1016/j.chemphyslip.2013.10.009
22.
McMahon
,
H. T.
,
Kozlov
,
M. M.
, and
Martens
,
S.
,
2010
, “
Membrane Curvature in Synaptic Vesicle Fusion and Beyond
,”
Cell
,
140
(
5
), pp.
601
605
.10.1016/j.cell.2010.02.017
23.
Bykhovskaia
,
M.
,
2015
, “
Calcium Binding Promotes Conformational Flexibility of the Neuronal Ca2+ Sensor Synaptotagmin
,”
Biophys. J.
,
108
(
10
), pp.
2507
2520
.10.1016/j.bpj.2015.04.007
24.
Wu
,
Z.
, and
Schulten
,
K.
,
2014
, “
Synaptotagmin's Role in Neurotransmitter Release Likely Involves Ca2+-Induced Conformational Transition
,”
Biophys. J.
,
107
(
5
), pp.
1156
1166
.10.1016/j.bpj.2014.07.041
25.
Kiessling
,
V.
,
Ahmed
,
S.
,
Domanska
,
M. K.
,
Holt
,
M. G.
,
Jahn
,
R.
, and
Tamm
,
L. K.
,
2013
, “
Rapid Fusion of Synaptic Vesicles With Reconstituted Target SNARE Membranes
,”
Biophys. J.
,
104
(
9
), pp.
1950
1958
.10.1016/j.bpj.2013.03.038
26.
Sabatini
,
B. L.
, and
Regehr
,
W. G.
,
1996
, “
Timing of Neurotransmission at Fast Synapses in the Mammalian Brain
,”
Nature
,
384
(
6605
), pp.
170
172
.10.1038/384170a0
27.
Schwede
,
T.
,
Kopp
,
J.
,
Guex
,
N.
, and
Peitsch
,
M. C.
,
2003
, “
SWISS-MODEL: An Automated Protein Homology-Modeling Server
,”
Nucl. Acids Res.
,
31
(
13
), pp.
3381
3385
.10.1093/nar/gkg520
28.
Alsulami
,
A. F.
,
Thomas
,
S. E.
,
Jamasb
,
A. R.
,
Beaudoin
,
C. A.
,
Moghul
,
I.
,
Bannerman
,
B.
,
Copoiu
,
L.
,
Vedithi
,
S. C.
,
Torres
,
P.
, and
Blundell
,
T. L.
,
2021
, “
SARS-CoV-2 3D Database: Understanding the Coronavirus Proteome and Evaluating Possible Drug Targets
,”
Brief. Bioinform.
,
22
(
2
), pp.
769
780
.10.1093/bib/bbaa404
29.
Kumar
,
N.
,
Sood
,
D.
,
Singh
,
S.
,
Kumar
,
S.
, and
Chandra
,
R.
,
2021
, “
High Bio-Recognizing Aptamer Designing and Optimization Against Human Herpes Virus-5
,”
Eur. J. Pharm. Sci.
,
156
, p.
105572
.10.1016/j.ejps.2020.105572
30.
Waterhouse
,
A.
,
Bertoni
,
M.
,
Bienert
,
S.
,
Studer
,
G.
,
Tauriello
,
G.
,
Gumienny
,
R.
,
Heer
,
F. T.
,
de Beer
,
T. A. P.
,
Rempfer
,
C.
,
Bordoli
,
L.
,
Lepore
,
R.
, and
Schwede
,
T.
,
2018
, “
SWISS-MODEL: Homology Modelling of Protein Structures and Complexes
,”
Nucl. Acids Res.
,
46
(
W1
), pp.
W296
W303
.10.1093/nar/gky427
31.
Rhoades
,
R.
,
Henry
,
B.
,
Prichett
,
D.
,
Fang
,
Y.
, and
Teng
,
S.
,
2022
, “
Computational Saturation Mutagenesis to Investigate the Effects of Neurexin-1 Mutations on AlphaFold Structure
,”
Genes
,
13
(
5
), p.
789
.10.3390/genes13050789
32.
Scales
,
S. J.
,
Bock
,
J. B.
, and
Scheller
,
R. H.
,
2000
, “
Cell Biology - The Specifics of Membrane Fusion
,”
Nature
,
407
(
6801
), pp.
144
146
.10.1038/35025176
33.
Phillips
,
J. C.
,
Braun
,
R.
,
Wang
,
W.
,
Gumbart
,
J.
,
Tajkhorshid
,
E.
,
Villa
,
E.
,
Chipot
,
C.
,
Skeel
,
R. D.
,
Kale
,
L.
, and
Schulten
,
K.
,
2005
, “
Scalable Molecular Dynamics With NAMD
,”
J. Comput. Chem.
,
26
(
16
), pp.
1781
1802
.10.1002/jcc.20289
34.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graph. Modell.
,
14
(
1
), pp.
33
38
.10.1016/0263-7855(96)00018-5
35.
Qi
,
Y. F.
,
Cheng
,
X.
,
Han
,
W.
,
Jo
,
S.
,
Schulten
,
K.
, and
Im
,
W.
,
2014
, “
CHARMM-GUI PACE CG Builder for Solution, Micelle, and Bilayer Coarse-Grained Simulations
,”
J. Chem. Inf. Model.
,
54
(
3
), pp.
1003
1009
.10.1021/ci500007n
36.
Han
,
W.
, and
Wu
,
Y. D.
,
2007
, “
Coarse-Grained Protein Model Coupled With a Coarse-Grained Water Model: Molecular Dynamics Study of Polyalanine-Based Peptides
,”
J. Chem. Theory Comput.
,
3
(
6
), pp.
2146
2161
.10.1021/ct700151x
37.
Han
,
W.
,
Wan
,
C. K.
, and
Wu
,
Y. D.
,
2008
, “
Toward a Coarse-Grained Protein Model Coupled With a Coarse-Grained Solvent Model: Solvation Free Energies of Amino Acid Side Chains
,”
J. Chem. Theory Comput.
,
4
(
11
), pp.
1891
1901
.10.1021/ct800184c
38.
Han
,
W.
,
Wan
,
C. K.
,
Jiang
,
F.
, and
Wu
,
Y. D.
,
2010
, “
PACE Force Field for Protein Simulations. 1. Full Parameterization of Version 1 and Verification
,”
J. Chem. Theory Comput.
,
6
(
11
), pp.
3373
3389
.10.1021/ct1003127
39.
Han
,
W.
,
Wan
,
C. K.
, and
Wu
,
Y. D.
,
2010
, “
PACE Force Field for Protein Simulations. 2. Folding Simulations of Peptides
,”
J. Chem. Theory Comput.
,
6
(
11
), pp.
3390
3402
.10.1021/ct100313a
40.
Han
,
W.
, and
Schulten
,
K.
,
2012
, “
Further Optimization of a Hybrid United-Atom and Coarse-Grained Force Field for Folding Simulations: Improved Backbone Hydration and Interactions Between Charged Side Chains
,”
J. Chem. Theory Comput.
,
8
(
11
), pp.
4413
4424
.10.1021/ct300696c
41.
Marrink
,
S. J.
,
de Vries
,
A. H.
, and
Mark
,
A. E.
,
2004
, “
Coarse Grained Model for Semiquantitative Lipid Simulations
,”
J. Phys. Chem. B
,
108
(
2
), pp.
750
760
.10.1021/jp036508g
42.
Marrink
,
S. J.
,
Risselada
,
H. J.
,
Yefimov
,
S.
,
Tieleman
,
D. P.
, and
de Vries
,
A. H.
,
2007
, “
The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations
,”
J. Phys. Chem. B
,
111
(
27
), pp.
7812
7824
.10.1021/jp071097f
43.
Jo
,
S.
,
Kim
,
T.
,
Iyer
,
V. G.
, and
Im
,
W.
,
2008
, “
Software News and Updates - CHARNIM-GUI: A Web-Based Grraphical User Interface for CHARMM
,”
J. Comput. Chem.
,
29
(
11
), pp.
1859
1865
.10.1002/jcc.20945
44.
Vats
,
C.
,
Dhanjal
,
J. K.
,
Goyal
,
S.
,
Gupta
,
A.
,
Bharadvaja
,
N.
, and
Grover
,
A.
,
2015
, “
Mechanistic Analysis Elucidating the Relationship Between Lys96 Mutation in Mycobacterium Tuberculosis Pyrazinamidase Enzyme and Pyrazinamide Susceptibility
,”
BMC Genom.
,
16
(
S2
).10.1186/1471-2164-16-S2-S14
45.
Krishna
,
K. H.
,
Vadlamudi
,
Y.
, and
Kumar
,
M. S.
,
2016
, “
Viral Evolved Inhibition Mechanism of the RNA Dependent Protein Kinase PKR's Kinase Domain, a Structural Perspective
,”
PLoS One
,
11
(
4
), p.
e0153680
.10.1371/journal.pone.0153680
46.
Wan
,
C. K.
,
Han
,
W.
, and
Wu
,
Y. D.
,
2012
, “
Parameterization of PACE Force Field for Membrane Environment and Simulation of Helical Peptides and Helix-Helix Association
,”
J. Chem. Theory Comput.
,
8
(
1
), pp.
300
313
.10.1021/ct2004275
47.
Chéron
,
N.
,
Naepels
,
M.
,
Pluhařová
,
E.
, and
Laage
,
D.
,
2020
, “
Protein Preferential Solvation in Water:Glycerol Mixtures
,”
J. Phys. Chem. B
,
124
(
8
), pp.
1424
1437
.10.1021/acs.jpcb.9b11190
48.
Shukla
,
D.
, and
Trout
,
B. L.
,
2011
, “
Preferential Interaction Coefficients of Proteins in Aqueous Arginine Solutions and Their Molecular Origins
,”
J. Phys. Chem. B
,
115
(
5
), pp.
1243
1253
.10.1021/jp108586b
49.
Ma
,
L.
,
Pegram
,
L.
,
Record
,
M. T.
, and
Cui
,
Q.
,
2010
, “
Preferential Interactions Between Small Solutes and the Protein Backbone: A Computational Analysis
,”
Biochemistry
,
49
(
9
), pp.
1954
1962
.10.1021/bi9020082
50.
Martens
,
S.
,
Kozlov
,
M. M.
, and
McMahon
,
H. T.
,
2007
, “
How Synaptotagmin Promotes Membrane Fusion
,”
Science
,
316
(
5828
), pp.
1205
1208
.10.1126/science.1142614
51.
Wu
,
Z.
,
Thiyagarajan
,
S.
,
O'Shaughnessy
,
B.
, and
Karatekin
,
E.
,
2017
, “
Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains
,”
Front. Mol. Neurosci.
,
10
, p.
315
.10.3389/fnmol.2017.00315
52.
Stelzer
,
W.
,
Poschner
,
B. C.
,
Stalz
,
H.
,
Heck
,
A. J.
, and
Langosch
,
D.
,
2008
, “
Sequence-Specific Conformational Flexibility of SNARE Transmembrane Helices Probed by Hydrogen/Deuterium Exchange
,”
Biophys. J.
,
95
(
3
), pp.
1326
1335
.10.1529/biophysj.108.132928
53.
Han
,
J.
,
Pluhackova
,
K.
, and
Bockmann
,
R. A.
,
2017
, “
The Multifaceted Role of SNARE Proteins in Membrane Fusion
,”
Front. Physiol.
,
8
, p.
5
.10.3389/fphys.2017.00005
54.
Shin
,
Y. K.
,
2013
, “
Two Gigs of Munc18 in Membrane Fusion
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
35
), pp.
14116
14117
.10.1073/pnas.1313749110
You do not currently have access to this content.