Abstract

The foot is a highly complex biomechanical system for which finite element (FE) modeling has been used to evaluate its loading environment. However, there is limited knowledge of first metatarsophalangeal (MTP) and first metatarsocuneiform (MTC) joint contact mechanics. Our goal was to develop a framework for FE modeling of the medial forefoot which could accurately predict experimental measurements of first MTP and first MTC joint loading. Simulations of planus and rectus foot types were conducted for midstance of gait. A custom-built force-controlled cadaveric test-rig was used to derive intracapsular pressure sensor measurements of contact pressure, force, and area during quasi-static loading. The FE model was driven under the same boundary and loading conditions as the cadaver. Mesh sensitivity analyses and best-fit calibrations of moduli for first MTP and first MTC joint cartilage were performed. Consistent with previous experimental research, a lower compressive modulus was best-fit to the first MTP compared to first MTC joint at 10 MPa and 20 MPa, respectively. Mean errors in contact pressures, forces, and areas were 24%, 4%, and 40% at the first MTP joint and 23%, 12%, and 19% at the first MTC joint, respectively. The present developmental framework may provide a basis for future modeling of first MTP and first MTC joint contact mechanics. This study acts as a precursor to validation of realistic physiological loading across gait to investigate joint loading, foot type biomechanics, and surgical interventions of the medial forefoot.

References

1.
Van Beek
,
C.
, and
Greisberg
,
J.
,
2011
, “
Mobility of the First Ray: Review Article
,”
Foot Ankle Int.
,
32
(
9
), pp.
917
922
.10.3113/FAI.2011.0917
2.
Van Saase
,
J. L.
,
van Romunde
,
L. K.
,
Cats
,
A.
,
Vandenbroucke
,
J. P.
, and
Valkenburg
,
H. A.
,
1989
, “
Epidemiology of Osteoarthritis: Zoetermeer Survey. Comparison of Radiological Osteoarthritis in a Dutch Population With That of 10 Other Populations
,”
Ann. Rheum. Dis.
,
48
(
4
), pp.
271
280
.10.1136/ard.48.4.271
3.
Morgan
,
O. J.
,
Hillstrom
,
H. J.
,
Ellis
,
S. J.
,
Golightly
,
Y. M.
,
Russell
,
R.
,
Hannan
,
M. T.
,
Deland
,
J. T.
, and
Hillstrom
,
R.
,
2019
, “
Osteoarthritis in England: Incidence Trends From National Health Service Hospital Episode Statistics
,”
ACR Open Rheum.
,
1
(
8
), pp.
493
498
.10.1002/acr2.11071
4.
Brewster
,
M.
,
2010
, “
Does Total Joint Replacement or Arthrodesis of the First Metatarsophalangeal Joint Yield Better Functional Results? A Systematic Review of the Literature
,”
J. Foot Ankle Surg.
,
49
(
6
), pp.
546
552
.10.1053/j.jfas.2010.07.003
5.
Roddy
,
E.
, and
Menz
,
H. B.
,
2018
, “
Foot Osteoarthritis: Latest Evidence and Developments
,”
Ther. Adv. Musculoskeletal Dis.
,
10
(
4
), pp.
91
103
.10.1177/1759720X17753337
6.
Menz
,
H. B.
,
Roddy
,
E.
,
Marshall
,
M.
,
Thomas
,
M. J.
,
Rathod
,
T.
,
Myers
,
H.
,
Thomas
,
E.
, and
Peat
,
G. M.
,
2015
, “
Demographic and Clinical Factors Associated With Radiographic Severity of First Metatarsophalangeal Joint Osteoarthritis: Cross-Sectional Findings From the Clinical Assessment Study of the Foot
,”
Osteoarthritis Cartilage
,
23
(
1
), pp.
77
82
.10.1016/j.joca.2014.10.007
7.
Hillstrom
,
H. J.
,
Song
,
J.
,
Kraszewski
,
A. P.
,
Hafer
,
J. F.
,
Mootanah
,
R.
,
Dufour
,
A. B.
,
Chow
,
B. S.
, and
Deland
,
J. T.
, III
,
2013
, “
Foot Type Biomechanics Part 1: Structure and Function of the Asymptomatic Foot
,”
Gait Posture
,
37
(
3
), pp.
445
451
.10.1016/j.gaitpost.2012.09.007
8.
Rao
,
S.
, and
Bell
,
K.
,
2013
, “
Reliability and Prevelance of Radiographic Measures of Metatarsus Primus Elevatus and Arch Alignment in Individuals With Midfoot Arthritis and Controls
,”
J. Am. Podiatric Med. Assoc.
,
103
, pp.
347
354
.10.7547/1030347
9.
Sasazaki
,
Y.
,
Shore
,
R.
, and
Seedhom
,
B. B.
,
2006
, “
Deformation and Failure of Cartilage in the Tensile Mode
,”
J. Anat.
,
208
(
6
), pp.
681
694
.10.1111/j.1469-7580.2006.00569.x
10.
Guilak
,
F.
,
Fermor
,
B.
,
Keefe
,
F. J.
,
Kraus
,
V. B.
,
Olson
,
S. A.
,
Pisetsky
,
D. S.
,
Setton
,
L. A.
, and
Weinberg
,
J. B.
,
2004
, “
The Role of Biomechanics and Inflammation in Cartilage Injury and Repair
,”
Clin. Orthop. Relat. Res.
,
423
pp.
17
26
.10.1097/01.blo.0000131233.83640.91
11.
Venäläinen
,
M. S.
,
Mononen
,
M. E.
,
Salo
,
J.
,
Räsänen
,
L. P.
,
Jurvelin
,
J. S.
,
Toyräs
,
J.
,
Viren
,
T.
, and
Korhonen
,
R. K.
,
2016
, “
Quantitative Evaluation of the Mechanical Risks Caused by Focal Cartilage Defects in the Knee
,”
Sci. Rep.
,
6
(
1
), p.
37538
.10.1038/srep37538
12.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
R.
, and
Huiskes
,
R.
,
2005
, “
The Role of Computational Models in the Search for the Mechanical Behavior and Damage Mechanisms of Articular Cartilage
,”
Med. Eng. Phys.
,
27
(
10
), pp.
810
826
.10.1016/j.medengphy.2005.03.004
13.
Viceconti
,
M.
,
Olsen
,
S.
,
Nolte
,
L.-P.
, and
Burton
,
K.
,
2005
, “
Extracting Clinically Relevant Data From Finite Element Simulations
,”
Clin. Biomech.
,
20
(
5
), pp.
451
454
.10.1016/j.clinbiomech.2005.01.010
14.
Henninger
,
H. B.
,
Reese
,
S. P.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2010
, “
Validation of Computational Models in Biomechanics
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
7
), pp.
801
812
.10.1243/09544119JEIM649
15.
ASME Committee (PT60) on Verification and Validation in Computational Solid Mechanics
,
2006
,
Guide for Verification and Validation in Computational Solid Mechanics
,
American Society of Mechanical Engineers
,
New York
.
16.
Gefen
,
A.
,
2002
, “
Stress Analysis of the Standing Foot Following Surgical Plantar Fascia Release
,”
J. Biomech.
,
35
(
5
), pp.
629
637
.10.1016/S0021-9290(01)00242-1
17.
Isvilanonda
,
V.
,
Dengler
,
E.
,
Iaquinto
,
J. M.
,
Sangeorzan
,
B. J.
, and
Ledoux
,
W. R.
,
2012
, “
Finite Element Analysis of the Foot: Model Validation and Comparison Between Two Common Treatments of the Clawed Hallux Deformity
,”
Clin. Biomech.
,
27
(
8
), pp.
837
844
.10.1016/j.clinbiomech.2012.05.005
18.
Wong
,
D. W.
,
Zhang
,
M.
,
Yu
,
J.
, and
Leung
,
A. K.
,
2014
, “
Biomechanics of First Ray Hypermobility: An Investigation on Joint Force During Walking Using Finite Element Analysis
,”
J. Biomech.
,
36
(
11
), pp.
1388
1393
.10.1016/j.medengphy.2014.03.004
19.
Akrami
,
M.
,
Qian
,
Z.
,
Zou
,
Z.
,
Howard
,
D.
,
Nester
,
C. J.
, and
Ren
,
L.
,
2018
, “
Subject-Specific Finite Element Modelling of the Human Foot Complex During Walking: Sensitivity Analysis of Material Properties, Boundary and Loading Conditions
,”
Biomech. Model. Mechanobiol.
,
17
(
2
), pp.
559
576
.10.1007/s10237-017-0978-3
20.
Wong
,
D. W. C.
,
Wang
,
Y.
,
Zhang
,
M.
, and
Aaron
,
K. L. L.
,
2015
, “
Functional Restoration and Risk of Non-Union of the First Metatarsocuneiform Arthrodesis for Hallux Valgus: A Finite Element Approach
,”
J. Biomech.
,
48
(
12
), pp.
3142
3148
.10.1016/j.jbiomech.2015.07.013
21.
Budhabhatti
,
S. P.
,
Erdemir
,
A.
,
Petre
,
M.
,
Sferra
,
J.
,
Donley
,
B.
, and
Cavanagh
,
P. R.
,
2007
, “
Finite Element Modeling of the First Ray of the Foot: A Tool for the Design of Interventions
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
750
756
.10.1115/1.2768108
22.
Flavin
,
R.
,
Halpin
,
T.
,
O'Sullivan
,
R.
,
FitzPatrick
,
D.
,
Ivankovic
,
A.
, and
Stephens
,
M. M.
,
2008
, “
A Finite-Element Analysis Study of the Metatarsophalangeal Joint of the Hallux Rigidus
,”
Bone Jt. J.
,
90-B
(
10
), pp.
1334
1340
.10.1302/0301-620X.90B10.20506
23.
García-González
,
A.
,
Bayod
,
J.
,
Prados-Frutos
,
J. C.
,
Losa-Iglesias
,
M.
,
Jules
,
K. T.
,
de Bengoa-Vallejo
,
R. B.
, and
Doblaré
,
M.
,
2009
, “
Finite-Element Simulation of Flexor Digitorum Longus or Flexor Digitorum Brevis Tendon Transfer for the Treatment of Claw Toe Deformity
,”
J. Biomech.
,
42
(
11
), pp.
1697
1704
.10.1016/j.jbiomech.2009.04.031
24.
Morales-Orcajo
,
E.
,
Souza
,
T. R.
,
Bayod
,
J.
, and
de Las Casas
,
E. B.
,
2017
, “
Non-Linear Finite Element Model to Assess the Effect of Tendon Forces on the Foot-Ankle Complex
,”
Med. Eng. Phys.
,
49
, pp.
71
78
.10.1016/j.medengphy.2017.07.010
25.
Henak
,
C. R.
,
Kapron
,
A. L.
,
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2014
, “
Specimen-Specific Predictions of Contact Stress Under Physiological Loading in the Human Hip: Validation and Sensitivity Studies
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
387
400
.10.1007/s10237-013-0504-1
26.
Shepard
,
D. E.
, and
Seedhom
,
B. B.
,
1999
, “
The ‘Instantaneous’ Compressive Modulus of Human Articular Cartilage in Joint of the Lower Limb
,”
Rheumatology
,
38
, pp.
124
132
.10.1093/rheumatology/38.2.124
27.
Buldt
,
A. K.
,
Levinger
,
P.
,
Murley
,
G. S.
,
Menz
,
H. B.
,
Nester
,
C. J.
, and
Landorf
,
K. B.
,
2015
, “
Foot Posture Is Associated With Kinematics of the Foot During Gait: A Comparison of Normal, Planus and Cavus Feet
,”
Gait Posture
,
42
(
1
), pp.
42
48
.10.1016/j.gaitpost.2015.03.004
28.
Athanasiou
,
K. A.
,
Liu
,
G. T.
,
Lavery
,
L. A.
,
Lanctot
,
D. R.
, and
Schenck
,
R. C.
,
1998
, “
Biomechanical Topography of Human Articular Cartilage in the First Metatarsophalangeal Joint
,”
Clin. Orthop. Relat. Res.
,
348
, pp.
269
281
.https://journals.lww.com/clinorthop/abstract/1998/03000/biomechanical_topography_of_human_articular.38.aspx
29.
Liu
,
G. T.
,
Lavery
,
L. A.
,
Schenck
,
R. C.
, Jr.
,
Lanctot
,
D. R.
,
Zhu
,
C. F.
, and
Athanasiou
,
K. A.
,
1997
, “
Human Articular Cartilage Biomechanics of the Second Metatarsal Intermediate Cuneiform Joint
,”
J. Foot Ankle Surg.
,
36
(
5
), pp.
367
374
.10.1016/S1067-2516(97)80039-7
30.
Nakamura
,
S.
,
Crowninshield
,
R. D.
, and
Cooper
,
R. R.
,
1981
, “
An Analysis of Soft Tissue Loading in the Foot—A Preliminary Report
,”
Bull. Prosthet. Res.
,
10
, pp.
27
34
.https://pubmed.ncbi.nlm.nih.gov/7332829/
31.
Kitaoka
,
H. B.
,
Luo
,
Z. P.
,
Growney
,
E. S.
,
Berglund
,
L. J.
, and
An
,
K. N.
,
1994
, “
Material Properties of the Plantar Aponeurosis
,”
Foot Ankle Int.
,
15
(
10
), pp.
557
560
.10.1177/107110079401501007
32.
Mente
,
P. L.
, and
Lewis
,
J. L.
,
1994
, “
Elastic Modulus of Calcified Cartilage Is an Order of Magnitude Less Than That of Subchondral Bone
,”
J. Orthop. Res.
,
12
(
5
), pp.
637
647
.10.1002/jor.1100120506
33.
Mkandawire
,
C.
,
Ledoux
,
W. R.
,
Sangeorzan
,
B. J.
, and
Ching
,
R. P.
,
2005
, “
Foot and Ankle Ligament Morphometry
,”
J. Rehabil. Res. Dev.
,
42
(
6
), pp.
809
820
.10.1682/JRRD.2004.08.0094
34.
Siegler
,
S.
,
Block
,
J.
, and
Schneck
,
C. D.
,
1988
, “
The Mechanical Characteristics of the Collateral Ligaments of the Human Ankle Joint
,”
Foot Ankle Int.
,
8
(
5
), pp.
234
242
.10.1177/107110078800800502
35.
Kura
,
H.
,
Luo
,
Z.-P.
,
Kitaoka
,
H. B.
,
Smutz
,
W. P.
, and
An
,
K.-N.
,
2001
, “
Mechanical Behaviour of the Lisfranc and Dorsal Cuneometatarsal Ligaments: In Vitro Biomechanical Study
,”
J. Orthop. Trauma
,
15
(
2
), pp.
107
110
.10.1097/00005131-200102000-00006
36.
Dietrich
,
T. J.
,
da Silva
,
F. L. F.
,
de Abreu
,
M. R.
,
Klammer
,
G.
, and
Pfirrmann
,
C. W. A.
,
2015
, “
First Metatarsophalangeal Joint—MRI Findings in Asymptomatic Volunteers
,”
Eur. Radiol.
,
25
(
4
), pp.
970
979
.10.1007/s00330-014-3489-y
37.
Deland
,
J. T.
,
Lee
,
K.-T.
,
Sobel
,
M.
, and
DiCarlo
,
E. F.
,
1995
, “
Anatomy of the Planar Plate and Its Attachments in the Lesser Metatarsal Phalangeal Joint
,”
Foot Ankle Int.
,
16
(
8
), pp.
480
486
.10.1177/107110079501600804
38.
Zhang
,
M.
, and
Mak
,
A. F.
,
1999
, “
In Vivo Friction Properties of Human Skin
,”
Prosthet. Orthot. Int.
,
23
(
2
), pp.
135
141
.10.3109/03093649909071625
39.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
,
1998
, “
Effects of Inserting a Pressensor Film Into Articular Joints on the Actual Contact Mechanics
,”
ASME J. Biomech. Eng.
,
120
(
5
), pp.
655
659
.10.1115/1.2834758
40.
Cheung
,
J. T. M.
,
Zhang
,
M.
,
Leung
,
A. K. L.
, and
Fan
,
Y. B.
,
2005
, “
Three-Dimensional Finite Element Analysis of the Foot During Standing—A Material Sensitivity Study
,”
J. Biomech.
,
38
(
5
), pp.
1045
1054
.10.1016/j.jbiomech.2004.05.035
41.
Peng
,
Y.
,
Wong
,
D. W. C.
,
Chen
,
T. L. W.
,
Wan
,
Y.
,
Zhang
,
G.
,
Yan
,
F.
, and
Zhang
,
M.
,
2021
, “
Influence of Arch Support Heights on the Internal Foot Mechanics of Flatfoot During Walking: A Muscle-Driven Finite Element Analysis
,”
Comput. Biol. Med.
,
132
, p.
104355
.10.1016/j.compbiomed.2021.104355
42.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2008
, “
Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051008
.10.1115/1.2953472
43.
Naghibi Beidokhti
,
H.
,
Janssen
,
D.
,
van de Groes
,
S.
,
Hazrati
,
J.
,
Van den Boogaard
,
T.
, and
Verdonschot
,
N.
,
2017
, “
The Influence of Ligament Modelling Strategies on the Predictive Capability of Finite Element Models of the Human Knee Joint
,”
J. Biomech.
,
65
, pp.
1
11
.10.1016/j.jbiomech.2017.08.030
44.
Jansson
,
K. S.
,
Michalski
,
M. P.
,
Smith
,
S. D.
,
LaPrade
,
R. F.
, and
Wijdicks
,
C. A.
,
2013
, “
Tekscan Pressure Sensor Output Changes in the Presence of Liquid Exposure
,”
J. Biomech.
,
46
(
3
), pp.
612
614
.10.1016/j.jbiomech.2012.09.033
45.
Drewniak
,
E. I.
,
Crisco
,
J. J.
,
Spenciner
,
D. B.
, and
Fleming
,
B. C.
,
2007
, “
Accuracy of Circular Contact Area Measurements With Thin-Film Pressure Sensors
,”
J. Biomech.
,
40
(
11
), pp.
2569
2572
.10.1016/j.jbiomech.2006.12.002
46.
Ledoux
,
W. R.
, and
Hillstrom
,
H. J.
,
2002
, “
The Distributed Plantar Vertical Force of Neutrally Aligned and Pes Planus Feet
,”
Gait Posture
,
15
(
1
), pp.
1
9
.10.1016/S0966-6362(01)00165-5
47.
Buldt
,
A. K.
,
Forghany
,
S.
,
Landorf
,
K. B.
,
Levinger
,
P.
,
Murley
,
G. S.
, and
Menz
,
H. B.
,
2018
, “
Foot Posture Is Associated With Planar Pressure During Gait: A Comparison of Normal, Planus and Cavus Feet
,”
Gait Posture
,
62
, pp.
235
240
.10.1016/j.gaitpost.2018.03.005
48.
Sharkey
,
N. A.
,
Ferris
,
L.
, and
Donahue
,
S. W.
,
1998
, “
Biomechanical Consequences of Plantar Fascia Release or Rupture During Gait: Part I—Disruption in Longitudinal Arch Confirmation
,”
Foot Ankle Int.
,
8
, pp.
12
20
.10.1177/107110079801901204
49.
Erdemir
,
A.
,
Hamel
,
A. J.
,
Fauth
,
A. R.
,
Piazza
,
S. J.
, and
Sharkey
,
N. A.
,
2004
, “
Dynamic Loading of the Plantar Aponeurosis in Walking
,”
J. Bone Jt. Surg.
,
86
(
3
), pp.
546
552
.10.2106/00004623-200403000-00013
50.
Robinson
,
D. L.
,
Mariana
,
E. K.
,
Walsh
,
N. C.
,
Ackland
,
D. C.
,
de Steiger
,
R. N.
, and
Pandy
,
M. G.
,
2016
, “
Mechanical Properties of Normal and Osteoarthritis Human Articular Cartilage
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
96
109
.10.1016/j.jmbbm.2016.01.015
51.
Brown
,
C. P.
,
Nguyen
,
T. C.
,
Moody
,
H. R.
,
Crawford
,
R. W.
, and
Oloyede
,
A.
,
2009
, “
Assessment of Common Hyperelastic Constitutive Equations for Describing Normal and Osteoarthritis Articular Cartilage
,”
Proc. Inst. Mech. Eng., Part H
,
223
(
6
), pp.
643
652
.10.1243/09544119JEIM546
52.
Harris
,
M. D.
,
Anderson
,
A. E.
,
Henak
,
C. R.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2012
, “
Finite Element Prediction of Cartilage Contact Stresses in Normal Human Hips
,”
J. Orthop. Res.
,
30
(
7
), pp.
1133
1139
.10.1002/jor.22040
53.
Morgan
,
O. J.
,
Hillstrom
,
H. J.
,
Ranawat
,
A.
,
Fragomen
,
A. T.
,
Rozbruch
,
S. R.
, and
Hillstrom
,
R.
,
2019
, “
Effects of a Medial Knee Unloading Implant on Tibiofemoral Joint Mechanics During Walking
,”
J. Orthop. Res.
,
37
(
10
), pp.
2149
2156
.10.1002/jor.24379
54.
Ateshian
,
G. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Equivalence Between Short-Time Biphasic and Incompressible Elastic Material Responses
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
405
412
.10.1115/1.2720918
55.
Todd
,
J. N.
,
Maak
,
T. G.
,
Ateshian
,
G. A.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2018
, “
Hip Chondrolabral Mechanics During Activities of Daily Living: Role of the Labrum and Interstitial Fluid Pressurization
,”
J. Biomech.
,
69
, pp.
113
120
.10.1016/j.jbiomech.2018.01.001
56.
Speirs
,
A. D.
,
Beaule
,
P. E.
,
Ferguson
,
S. J.
, and
Frei
,
H.
,
2014
, “
Stress Distribution and Consolidation in Cartilage Constituents Is Influenced by Cyclic Loading and Osteoarthritic Degeneration
,”
J. Biotechnol.
,
47
(
10
), pp.
2348
2353
.10.1016/j.jbiomech.2014.04.031
You do not currently have access to this content.