Abstract

Low-friction foot/ground contacts present a particular challenge for stable bipedal walkers. The slippage of the stance foot introduces complexity in robot dynamics and the general locomotion stability results cannot be applied directly. We relax the commonly used assumption of nonslip contact between the walker foot and the ground and examine bipedal dynamics under foot slip. Using a two-mass linear inverted pendulum model, we introduce the concept of balance recoverability and use it to quantify the balanced or fall-prone walking gaits. Balance recoverability also serves as the basis for the design of the balance recovery controller. We design the within- or multi-step recovery controller to assist the walker to avoid fall. The controller performance is validated through simulation results and robustness is demonstrated in the presence of measurement noises as well as variations of foot/ground friction conditions. In addition, the proposed methods and models are used to analyze the data from human walking experiments. The multiple subject experiments validate and illustrate the balance recoverability concept and analyses.

References

1.
Ambrose
,
A. F.
,
Paul
,
G.
, and
Hausdorff
,
J. M.
,
2013
, “
Risk Factors for Falls Among Older Adults: A Review of the Literature
,”
Maturitas
,
75
(
1
), pp.
51
61
.10.1016/j.maturitas.2013.02.009
2.
Heinrich
,
S.
,
Rapp
,
K.
,
Rissmann
,
U.
,
Becker
,
C.
, and
König
,
H.-H.
,
2010
, “
Cost of Falls in Old Age: A Systematic Review
,”
Osteoporosis Intl
,.,
21
(
6
), pp.
891
902
.10.1007/s00198-009-1100-1
3.
Wang
,
Y.
,
Bhatt
,
T.
,
Liu
,
X.
,
Wang
,
S.
,
Lee
,
A.
,
Wang
,
E.
, and
Pai
,
Y.-C.
,
2019
, “
Can Treadmill-Slip Perturbation Training Reduce Immediate Risk of Over-Ground-Slip Induced Fall Among Community-Dwelling Older Adults?
,”
J. Biomech.
,
84
, pp.
58
66
.10.1016/j.jbiomech.2018.12.017
4.
Wang
,
Y.
,
Wang
,
S.
,
Lee
,
A.
,
Pai
,
Y.-C.
, and
Bhatt
,
T.
,
2019
, “
Treadmill-Gait Slip Training in Community-Dwelling Older Adults: Mechanisms of Immediate Adaptation for a Progressive Ascending-Mixed-Intensity Protocol
,”
Exp. Brain Res.
,
237
(
9
), pp.
2305
2317
.10.1007/s00221-019-05582-3
5.
Chambers
,
A. J.
, and
Cham
,
R.
,
2007
, “
Slip-Related Muscle Activation Patterns in the Stance Leg During Walking
,”
Gait Posture
,
25
(
4
), pp.
565
572
.10.1016/j.gaitpost.2006.06.007
6.
Trkov
,
M.
,
Chen
,
K.
,
Yi
,
J.
, and
Liu
,
T.
,
2019
, “
Inertial Sensor-Based Slip Detection in Human Walking
,”
IEEE Trans. Automat. Sci. Eng.
,
16
(
3
), pp.
1399
1411
.10.1109/TASE.2018.2884723
7.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J. H.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
CRC Press
,
Boca Raton, FL
.
8.
Trkov
,
M.
,
Chen
,
K.
, and
Yi
,
J.
,
2019
, “
Bipedal Model and Hybrid Zero Dynamics of Human Walking With Foot Slip
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
10
), p.
101002
.10.1115/1.4043360
9.
Ma
,
W.-L.
,
Or
,
Y.
, and
Ames
,
A. D.
,
2019
, “
Dynamic Walking on Slippery Surfaces: Demonstrating Stable Bipedal Gaits With Planned Ground Slippage
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Montreal, QC, Canada, May 20–24, pp.
3705
3711
.10.1109/ICRA.2019.8793761
10.
Chen
,
T.
, and
Goodwine
,
B.
,
2021
, “
Robust Gait Design for a Compass Gait Biped on Slippery Surfaces
,”
Robot. Auton. Syst.
,
140
, p.
103762
.10.1016/j.robot.2021.103762
11.
Pratt
,
J.
,
Carff
,
J.
,
Drakunov
,
S.
, and
Goswami
,
A.
,
2006
, “
Capture Point: A Step Toward Humanoid Push Recovery
,”
Proceedings of IEEE International Conference on Humanoid Robots
, Genova, Italy, Dec. 4–6, pp.
200
207
.10.1109/ICHR.2006.321385
12.
Vukobratović
,
M.
, and
Borovac
,
B.
,
2004
, “
Zero-Moment Point–Thirty Five Years of Its Life
,”
Intl. J. Humanoid Robot.
,
01
(
01
), pp.
157
173
.10.1142/S0219843604000083
13.
Chen
,
K.
,
Trkov
,
M.
,
Chen
,
S.
,
Yi
,
J.
, and
Liu
,
T.
,
2016
, “
Balance Recovery Control of Human Walking With Foot Slip
,”
Proceedings of the American Control Conference
, Boston, MA, July 6–8, pp.
4385
4390
.10.1109/ACC.2016.7525612
14.
Koolen
,
T.
,
de Boer
,
T.
,
Rebula
,
J.
,
Goswami
,
A.
, and
Pratt
,
J.
,
2012
, “
Capturability-Based Analysis and Control of Legged Locomotion, Part 1: Theory and Application to Three Simple Gait Models
,”
Int. J. Robot. Res.
,
31
(
9
), pp.
1094
1113
.10.1177/0278364912452673
15.
Mihalec
,
M.
, and
Yi
,
J.
,
2018
, “
Capturability of Inverted Pendulum Gait Model Under Slip Conditions
,”
ASME
Paper No. DSCC2018-9203.10.1115/DSCC2018-9203
16.
Zaytsev
,
P.
,
Wolfslag
,
W.
, and
Ruina
,
A.
,
2018
, “
The Boundaries of Walking Stability: Viability and Controllability of Simple Models
,”
IEEE Trans. Rob.
,
34
(
2
), pp.
336
352
.10.1109/TRO.2017.2782818
17.
Kuo
,
A. D.
,
2007
, “
The Six Determinants of Gait and the Inverted Pendulum Analogy: A Dynamic Walking Perspective
,”
Human Move. Sci.
,
26
(
4
), pp.
617
656
.10.1016/j.humov.2007.04.003
18.
Komura
,
T.
,
Nagano
,
A.
,
Leung
,
H.
, and
Shinagawa
,
Y.
,
2005
, “
Simulating Pathological Gait Using the Enhanced Linear Inverted Pendulum Model
,”
IEEE Trans. Biomed. Eng.
,
52
(
9
), pp.
1502
1513
.10.1109/TBME.2005.851530
19.
Schwind
,
W. J.
,
1998
, “
Spring Loaded Inverted Pendulum Running: A Plant Model
,”
Ph.D. thesis
,
Univ. of Michigan
, Ann Arbor, MI.https://hdl.handle.net/2027.42/131537
20.
Kwon
,
T.
, and
Hodgins
,
J. K.
,
2017
, “
Momentum-Mapped Inverted Pendulum Models for Controlling Dynamic Human Motions
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
14
.10.1145/3072959.2983616
21.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2001
, “
The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
, Maui, HI, Oct. 29–Nov. 3, pp.
239
246
.10.1109/IROS.2001.973365
22.
Mihalec
,
M.
,
Zhao
,
Y.
, and
Yi
,
J.
,
2020
, “
Recoverability Estimation and Control for an Inverted Pendulum Walker Model Under Foot Slip
,”
Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Boston, MA, July 6–9, pp.
771
776
.10.1109/AIM43001.2020.9159043
23.
Mihalec
,
M.
,
Trkov
,
M.
, and
Yi
,
J.
,
2021
, “
Recoverability-Based Optimal Control for a Bipedal Walking Model With Foot Slip
,”
Proceedings of the American Control Conference
, New Orleans, LA, May 25–28, pp.
1766
1771
.10.23919/ACC50511.2021.9482702
24.
Zhao
,
Y.
,
Fernandez
,
B. R.
, and
Sentis
,
L.
,
2017
, “
Robust Optimal Planning and Control of Non-Periodic Bipedal Locomotion With a Centroidal Momentum Model
,”
Int. J. Robot. Res.
,
36
(
11
), pp.
1211
1242
.10.1177/0278364917730602
25.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
, 4th ed.,
Wiley
,
New York
.
26.
Trkov
,
M.
,
Yi
,
J.
,
Liu
,
T.
, and
Li
,
K.
,
2018
, “
Shoe-Floor Interactions Human Walking With Slips: Modeling and Experiments
,”
ASME J. Biomech. Eng.
,
140
(
3
), p.
031005
.10.1115/1.4038251
27.
Chen
,
S.
,
Stevenson
,
D.
,
Yu
,
S.
,
Mioskowska
,
M.
,
Yi
,
J.
,
Su
,
H.
, and
Trkov
,
M.
,
2021
, “
Wearable Knee Assistive Devices for Kneeling Tasks in Construction
,”
IEEE/ASME Trans. Mechatronics
,
26
(
4
), pp.
1989
1996
.10.1109/TMECH.2021.3081367
You do not currently have access to this content.