Abstract

Finite element musculoskeletal (FEMS) approaches using concurrent musculoskeletal (MS) and finite element (FE) models driven by motion data such as marker-based motion trajectory can provide insight into the interactions between the knee joint secondary kinematics, contact mechanics, and muscle forces in subject-specific biomechanical investigations. However, these data-driven FEMS systems have two major disadvantages that make them challenging to apply in clinical environments: they are computationally expensive and they require expensive and inconvenient equipment for data acquisition. In this study, we developed an FEMS model of the lower limb, driven solely by inertial measurement unit (IMU) sensors, that includes the tissue geometries of the intact knee joint and combines muscle modeling and elastic foundation (EF) theory-based contact analysis of a knee into a single framework. The model requires only the angular velocities and accelerations measured by the sensors as input, and the target outputs (knee contact mechanics, secondary kinematics, and muscle forces) are predicted from the convergence results of iterative calculations of muscle force optimization and knee contact mechanics. To evaluate its accuracy, the model was compared with in vivo experimental data during gait. The maximum contact pressure (12.6 MPa) in the rigid body contact analysis occurred on the medial side of the cartilage at the maximum loading response. The proposed computationally efficient framework drastically reduced the computational time (97.5% reduction) in comparison with the conventional deformable FE analysis. The developed framework combines measurement convenience and computational efficiency and shows promise for clinical applications aimed at understanding subject-specific interactions between the knee joint secondary kinematics, contact mechanics, and muscle forces.

References

1.
Baliunas
,
A. J.
,
Hurwitz
,
D. E.
,
Ryals
,
A. B.
,
Karrar
,
A.
,
Case
,
J. P.
,
Block
,
J. A.
, and
Andriacchi
,
T. P.
,
2002
, “
Increased Knee Joint Loads During Walking Are Present in Subjects With Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
10
(
7
), pp.
573
579
.10.1053/joca.2002.0797
2.
Heiden
,
T. L.
,
Lloyd
,
D. G.
, and
Ackland
,
T. R.
,
2009
, “
Knee Joint Kinematics, Kinetics and Muscle Co-Contraction in Knee Osteoarthritis Patient Gait
,”
Clin. Biomech.
,
24
(
10
), pp.
833
841
.10.1016/j.clinbiomech.2009.08.005
3.
Marouane
,
H.
,
Adl
,
A. S.
, and
Adouni
,
M.
,
2017
, “
3D Active-Passive Response of Human Knee Joint in Gait Is Markedly Altered When Simulated as a Planar 2D Joint
,”
Biomech. Model. Mechanobiol.
,
16
(
2
), pp.
693
703
.10.1007/s10237-016-0846-6
4.
Shu
,
L.
,
Yamamoto
,
K.
,
Yao
,
J.
,
Saraswat
,
P.
,
Liu
,
Y.
,
Mitsuishi
,
M.
, and
Sugita
,
N.
,
2018
, “
A Subject-Specific Finite Element Musculoskeletal Framework for Mechanics Analysis of a Total Knee Replacement
,”
J. Biomech.
,
77
, pp.
146
154
.10.1016/j.jbiomech.2018.07.008
5.
Hume
,
D. R.
,
Navacchia
,
A.
,
Ali
,
N. A.
, and
Shelburne
,
K. B.
,
2018
, “
The Interaction of Muscle Moment Arm, Knee Laxity, and Torque in a Multi-Scale Musculoskeletal Model of the Lower Limb
,”
J. Biomech.
,
76
, pp.
173
180
.10.1016/j.jbiomech.2018.05.030
6.
Hume
,
D. R.
,
Navacchia
,
A.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2019
, “
A Lower Extremity Model for Muscle-Driven Simulation of Activity Using Explicit Finite Element Modeling
,”
J. Biomech.
,
84
, pp.
153
160
.10.1016/j.jbiomech.2018.12.040
7.
Li
,
J.
,
2021
, “
Development and Validation of a Finite-Element Musculoskeletal Model Incorporating a Deformable Contact Model of the Hip Joint During Gait
,”
J. Mech. Behav. Biomed. Mater.
,
113
, p.
104136
.10.1016/j.jmbbm.2020.104136
8.
Hume
,
D. R.
,
Kefala
,
V.
,
Harris
,
M.
, and
Shelburne
,
K. B.
,
2018
, “
Comparison of Marker-Based and Stereo Radiography Knee Kinematics in Activities of Daily Living
,”
Ann. Biomed. Eng.
,
46
(
11
), pp.
1806
1815
.10.1007/s10439-018-2068-9
9.
Gray
,
H. A.
,
Guan
,
S.
,
Thomeer
,
L. T.
,
Schache
,
A. G.
,
Steiger
,
R. D.
, and
Pandy
,
M. G.
,
2019
, “
Three-Dimensional Motion of the Knee-Joint Complex During Normal Walking Revealed by Mobile Biplane X-Ray Imaging
,”
J. Orthop. Res.
,
37
(
3
), pp.
615
630
.10.1002/jor.24226
10.
Lathrop
,
R. L.
,
Chaudhari
,
A. M. W.
, and
Siston
,
R. A.
,
2011
, “
Comparative Assessment of Bone Pose Estimation Using Point Cluster Technique and OpenSim
,”
ASME J. Biomech. Eng.
,
133
(
11
), p.
114503
.10.1115/1.4005409
11.
Navacchia
,
A.
,
Hume
,
D. R.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2019
, “
A Computationally Efficient Strategy to Estimate Muscle Forces in a Finite Element Musculoskeletal Model of the Lower Limb
,”
J. Biomech.
,
84
, pp.
94
102
.10.1016/j.jbiomech.2018.12.020
12.
Wang
,
S.
,
Cai
,
Y.
,
Hase
,
K.
,
Uchida
,
D.
,
Kondo
,
D.
,
Saito
,
T.
, and
Ota
,
S.
,
2021
, “
Estimation of Knee Joint Angle During Gait Cycle Using Inertial Measurement Unit Sensors: A Method of Sensor-to-Clinical Bone Calibration on the Lower Limb Skeletal Model
,”
J. Biomech. Sci. Eng.
, epub.10.1299/jbse.21-00196
13.
O'Donovan
,
K. J.
,
Kamnik
,
R.
,
O'Keeffe
,
D. T.
, and
Lyons
,
G. M. A.
,
2007
, “
An Inertial and Magnetic Sensor Based Technique for Joint Angle Measurement
,”
J. Biomech.
,
40
(
12
), pp.
2604
2611
.10.1016/j.jbiomech.2006.12.010
14.
Jensen
,
R. J.
,
1978
, “
Estimation of the Biomechanical Properties of Three Body Types Using a Photogrammetric Method
,”
J. Biomech.
,
11
(
8–9
), pp.
349
358
.10.1016/0021-9290(78)90069-6
15.
Ae
,
M.
,
Tang
,
H.
, and
Yokoi
,
T.
,
1992
, “
Estimation of Inertia Properties of the Body Segments in Japanese Athletes
,”
Biomechanism
,
11
, pp.
23
33
(in Japanese).10.3951/biomechanisms.11.23
16.
Pérez-González
,
A.
,
Fenollosa-Esteve
,
C.
,
Sancho-Bru
,
J. L.
,
Sánchez-Marín
,
F. T.
,
Vergara
,
M.
, and
Rodríguez-Cervantes
,
P. J.
,
2008
, “
A Modified Elastic Foundation Contact Model for Application in 3D Models of the Prosthetic Knee
,”
Med. Eng. Phys.
,
30
(
3
), pp.
387
398
.10.1016/j.medengphy.2007.04.001
17.
Corral
,
E.
,
Moreno
,
R. G.
,
García
,
M. J. G.
, and
Castejón
,
C.
,
2021
, “
Nonlinear Phenomena of Contact in Multibody Systems Dynamics: A Review
,”
Nonlinear Dyn.
,
104
(
2
), pp.
1269
1295
.10.1007/s11071-021-06344-z
18.
Li
,
G.
,
Lopez
,
O.
, and
Rubash
,
H.
,
2001
, “
Variability of a Three Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis
,”
ASME J. Biomech. Eng.
,
123
(
4
), pp.
341
346
.10.1115/1.1385841
19.
Leroux
,
M. A.
, and
Setton
,
L. A.
,
2002
, “
Experimental and Biphasic FEM Determinations of the Material Properties and Hydraulic Permeability of the Meniscus in Tension
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
315
321
.10.1115/1.1468868
20.
McCann
,
L.
,
Ingham
,
E.
,
Jin
,
Z.
, and
Fisher
,
J.
,
2009
, “
Influence of the Meniscus on Friction and Degradation of Cartilage in the Natural Knee Joint
,”
Osteoarthritis Cartilage
,
17
(
8
), pp.
995
1000
.10.1016/j.joca.2009.02.012
21.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.10.1016/0021-9290(91)90019-J
22.
Halloran
,
J. P.
,
Easley
,
S. K.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2005
, “
Comparison of Deformable and Elastic Foundation Finite Element Simulations for Predicting Knee Replacement Kinematics
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
813
818
.10.1115/1.1992522
23.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.https://pubmed.ncbi.nlm.nih.gov/2676342/
24.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
Opensim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
25.
Ali
,
A. A.
,
Shalhoub
,
S. S.
,
Cyr
,
A. J.
,
Fitzpatrick
,
C. K.
,
Maletsky
,
L. P.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2016
, “
Validation of Predicted Patellofemoral Mechanics in a Finite Element Model of the Healthy and Cruciate-Deficient Knee
,”
J. Biomech.
,
49
(
2
), pp.
302
309
.10.1016/j.jbiomech.2015.12.020
26.
Yu
,
C.
,
Walker
,
P. S.
, and
Dewar
,
M. E.
,
2001
, “
The Effect of Design Variables of Condylar Total Knees on the Joint Forces in Step Climbing Based on a Computer Model
,”
J. Biomech.
,
34
(
8
), pp.
1011
1021
.10.1016/S0021-9290(01)00060-4
27.
Abdel-Rahman
,
E. M.
, and
Hefzy
,
M. S.
,
1998
, “
Three-Dimensional Dynamic Behaviour of the Human Knee Joint Under Impact Loading
,”
Med. Eng. Phys.
,
20
(
4
), pp.
276
290
.10.1016/S1350-4533(98)00010-1
28.
Du
,
J.
,
Gerdtman
,
C.
, and
Lindén
,
M.
,
2018
, “
Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review
,”
Sensors
,
18
(
4
), p.
1123
.10.3390/s18041123
29.
Winter
,
D. A.
,
2005
,
The Biomechanics and Motor Control of Human Movement
,
Wiley
,
Hoboken, NJ
, pp.
189
191
.
30.
Ren
,
L.
,
Jones
,
R. K.
, and
Howard
,
D.
,
2008
, “
Whole Body Inverse Dynamics Over a Complete Gait Cycle Based Only on Measured Kinematics
,”
J. Biomech.
,
41
(
12
), pp.
2750
2759
.10.1016/j.jbiomech.2008.06.001
31.
Hase
,
K.
, and
Yamazaki
,
N.
,
2002
, “
Computer Simulation Study of Human Locomotion With a Three-Dimensional Entire-Body Neuro-Musculo-Skeletal Model (I. Acquisition of Normal Walking
),”
JSME Int. J.
,
45
(
4
), pp.
1040
1050
.10.1299/jsmec.45.1040
32.
Kozanek
,
M.
,
Hosseini
,
A.
,
Liu
,
F.
,
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2009
, “
Tibiofemoral Kinematics and Condylar Motion During the Stance Phase of Gait
,”
J. Biomech.
,
42
(
12
), pp.
1877
1884
.10.1016/j.jbiomech.2009.05.003
33.
Clément
,
J.
,
Toliopoulos
,
P.
,
Hagemeister
,
N.
,
Desmeules
,
F.
,
Fuentes
,
A.
, and
Vendittoli
,
P. A.
,
2018
, “
Healthy 3D Knee Kinematics During Gait: Differences Between Women and Men, and Correlation With X-Ray Alignment
,”
Gait Posture
,
64
, pp.
198
204
.10.1016/j.gaitpost.2018.06.024
34.
Trinler
,
U.
,
Schwameder
,
H.
,
Baker
,
R.
, and
Alexander
,
N.
,
2019
, “
Muscle Force Estimation in Clinical Gait Analysis Using AnyBody and OpenSim
,”
J. Biomech.
,
86
, pp.
55
63
.10.1016/j.jbiomech.2019.01.045
35.
Thelen
,
D. G.
,
Choi
,
K. W.
, and
Schmitz
,
A. M.
,
2014
, “
Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p. 0
21033
.10.1115/1.4026358
36.
Lenhart
,
R. L.
,
Kaiser
,
J.
,
Smith
,
C. R.
, and
Thelen
,
D. G.
,
2015
, “
Prediction and Validation of Load-Dependent Behavior of the Tibiofemoral and Patellofemoral Joints During Movement
,”
Ann. Biomed. Eng.
,
43
(
11
), pp.
2675
2685
.10.1007/s10439-015-1326-3
37.
Smith
,
C. R.
,
Choi
,
K. W.
,
Negrut
,
D.
, and
Thelen
,
D. G.
,
2018
, “
Efficient Computation of Cartilage Contact Pressures Within Dynamic Simulations of Movement
,”
Comput. Methods Biomech. Biomed. Eng.: Imaging Visualization
,
6
(
5
), pp.
491
498
.10.1080/21681163.2016.1172346
38.
Rajagopal
,
A.
,
Dembia
,
C. L.
,
DeMers
,
M. S.
,
Delp
,
D. D.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2016
, “
Full Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2068
2079
.10.1109/TBME.2016.2586891
39.
Kang
,
K. T.
,
Koh
,
Y. G.
,
Nam
,
J. H.
,
Jung
,
M.
,
Kim
,
S. J.
, and
Kim
,
S. H.
,
2019
, “
Biomechanical Evaluation of the Influence of Posterolateral Corner Structures on Cruciate Ligaments Forces During Simulated Gait and Squatting
,”
PLoS One
,
14
(
4
), p.
e0214496
.10.1371/journal.pone.0214496
40.
Banks
,
S. A.
, and
Hodge
,
W. A.
,
1996
, “
Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single-Plane Fluoroscopy
,”
IEEE Trans. Biomed. Eng.
,
43
(
6
), pp.
638
649
.10.1109/10.495283
41.
Mahfouz
,
M. R.
,
Hoff
,
W. A.
,
Komistek
,
R. D.
, and
Dennis
,
D. K. A.
,
2003
, “
A Robust Method for Registration of Three-Dimensional Knee Implant Models to Two-Dimensional Fluoroscopy Images
,”
IEEE Trans. Med. Imaging
,
22
(
12
), pp.
1561
1574
.10.1109/TMI.2003.820027
42.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2005
, “
Muscle, Ligament, and Joint-Contact Forces at the Knee During Walking
,”
Med. Sci. Sports Exercise
,
37
(
11
), pp.
1948
1956
.10.1249/01.mss.0000180404.86078.ff
43.
Kumar
,
D.
,
Manal
,
K. T.
, and
Rudolph
,
K. S.
,
2013
, “
Knee Joint Loading During Gait in Healthy Controls and Individuals With Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
21
(
2
), pp.
298
305
.10.1016/j.joca.2012.11.008
44.
Bergmann
,
G.
,
Bender
,
A.
,
Graichen
,
F.
,
Dymke
,
J.
,
Rohlmann
,
A.
,
Trepczynski
,
A.
,
Heller
,
M. O.
, and
Kutzner
,
I.
,
2014
, “
Standardized Loads Acting in Knee Implants
,”
PLoS One
,
9
(
1
), p.
e86035
.10.1371/journal.pone.0086035
45.
Li
,
J.
,
Lu
,
Y.
,
Miller
,
S.
,
Jin
,
Z.
, and
Hua
,
X.
,
2019
, “
Development of a Finite Element Musculoskeletal Model With the Ability to Predict Contractions of Three-Dimensional Muscles
,”
J. Biomech.
,
94
, pp.
230
234
.10.1016/j.jbiomech.2019.07.042
46.
Li
,
J.
,
Marra
,
M.
,
Verdonschot
,
N.
, and
Lu
,
Y.
,
2021
, “
A Three-Dimensional Finite-Element Model of Gluteus Medius Muscle Incorporating Inverse-Dynamics-Based Optimization for Simulation of Non-Uniform Muscle Contraction
,”
Med. Eng. Phys.
,
87
, pp.
38
44
.10.1016/j.medengphy.2020.11.009
You do not currently have access to this content.