Abstract

The computer simulation of organ-scale biomechanistic models of cancer personalized via routinely collected clinical and imaging data enables to obtain patient-specific predictions of tumor growth and treatment response over the anatomy of the patient's affected organ. These patient-specific computational forecasts have been regarded as a promising approach to personalize the clinical management of cancer and derive optimal treatment plans for individual patients, which constitute timely and critical needs in clinical oncology. However, the computer simulation of the underlying spatiotemporal models can entail a prohibitive computational cost, which constitutes a barrier to the successful development of clinically-actionable computational technologies for personalized tumor forecasting. To address this issue, here we propose to utilize dynamic-mode decomposition (DMD) to construct a low-dimensional representation of cancer models and accelerate their simulation. DMD is an unsupervised machine learning method based on the singular value decomposition that has proven useful in many applications as both a predictive and a diagnostic tool. We show that DMD may be applied to Fisher–Kolmogorov models, which constitute an established formulation to represent untreated solid tumor growth that can further accommodate other relevant cancer phenomena (e.g., therapeutic effects, mechanical deformation). Our results show that a DMD implementation of this model over a clinically relevant parameter space can yield promising predictions, with short to medium-term errors remaining under 1% and long-term errors remaining under 20%, despite very short training periods. In particular, we have found that, for moderate to high tumor cell diffusivity and low to moderate tumor cell proliferation rate, DMD reconstructions provide accurate, bounded-error reconstructions for all tested training periods. Additionally, we also show that the three-dimensional DMD reconstruction of the tumor field can be leveraged to accurately reconstruct the displacement fields of the tumor-induced deformation of the host tissue. Thus, we posit the proposed data-driven approach has the potential to greatly reduce the computational overhead of personalized simulations of cancer models, thereby facilitating tumor forecasting, parameter identification, uncertainty quantification, and treatment optimization.

References

1.
Ferlay
,
J.
,
Colombet
,
M.
,
Soerjomataram
,
I.
,
Parkin
,
D. M.
,
Pineros
,
M.
,
Znaor
,
A.
, and
Bray
,
F.
,
2021
, “
Cancer Statistics for the Year 2020: An Overview
,”
Int. J. Cancer
,
149
(
4
), pp.
778
789
.10.1002/ijc.33588
2.
Litwin
,
M. S.
, and
Tan
,
H.-J.
,
2017
, “
The Diagnosis and Treatment of Prostate Cancer: A Review
,”
JAMA
,
317
(
24
), pp.
2532
2542
.10.1001/jama.2017.7248
3.
Omuro
,
A.
, and
DeAngelis
,
L. M.
,
2013
, “
Glioblastoma and Other Malignant Gliomas: A Clinical Review
,”
JAMA
,
310
(
17
), pp.
1842
1850
.10.1001/jama.2013.280319
4.
Waks
,
A. G.
, and
Winer
,
E. P.
,
2019
, “
Breast Cancer Treatment: A Review
,”
JAMA
,
321
(
3
), pp.
288
300
.10.1001/jama.2018.19323
5.
Jamal-Hanjani
,
M.
,
Quezada
,
S. A.
,
Larkin
,
J.
, and
Swanton
,
C.
,
2015
, “
Translational Implications of Tumor Heterogeneity
,”
Clin. Cancer Res.
,
21
(
6
), pp.
1258
1266
.10.1158/1078-0432.CCR-14-1429
6.
Marusyk
,
A.
, and
Polyak
,
K.
,
2010
, “
Tumor Heterogeneity: Causes and Consequences
,”
Biochim. Biophys. Acta (BBA) Rev. Cancer
,
1805
(
1
), pp.
105
117
.10.1016/j.bbcan.2009.11.002
7.
Karolak
,
A.
,
Markov
,
D. A.
,
McCawley
,
L. J.
, and
Rejniak
,
K. A.
,
2018
, “
Towards Personalized Computational Oncology: From Spatial Models of Tumour Spheroids, to Organoids, to Tissues
,”
J. R. Soc. Interface
,
15
(
138
), p.
20170703
.10.1098/rsif.2017.0703
8.
Lorenzo
,
G.
,
Hormuth
,
D. A.
, II
,
Jarrett
,
A. M.
,
Lima
,
E. A.
,
Subramanian
,
S.
,
Biros
,
G.
,
Oden
,
J.
,
Hughes
,
T. J.
, and
Yankeelov
,
T.
,
2021
, “
Quantitative In Vivo Imaging to Enable Tumor Forecasting and Treatment Optimization
,” arXiv preprint
arXiv:2102.12602
.10.48550/arXiv.2102.12602
9.
Rockne
,
R. C.
,
Hawkins-Daarud
,
A.
,
Swanson
,
K. R.
,
Sluka
,
J. P.
,
Glazier
,
J. A.
,
Macklin
,
P.
,
Hormuth
,
D. A.
,
Jarrett
,
A. M.
,
Lima
,
E. A. B. F.
,
Oden
,
J. T.
,
Biros
,
G.
,
Yankeelov
,
T. E.
,
Curtius
,
K.
,
Bakir
,
I. A.
,
Wodarz
,
D.
,
Komarova
,
N.
,
Aparicio
,
L.
,
Bordyuh
,
M.
,
Rabadan
,
R.
,
Finley
,
S. D.
,
Enderling
,
H.
,
Caudell
,
J.
,
Moros
,
E. G.
,
Anderson
,
A. R. A.
,
Gatenby
,
R. A.
,
Kaznatcheev
,
A.
,
Jeavons
,
P.
,
Krishnan
,
N.
,
Pelesko
,
J.
,
Wadhwa
,
R. R.
,
Yoon
,
N.
,
Nichol
,
D.
,
Marusyk
,
A.
,
Hinczewski
,
M.
, and
Scott
,
J. G.
,
2019
, “
The 2019 Mathematical Oncology Roadmap
,”
Phys. Biol.
,
16
(
4
), p.
041005
.10.1088/1478-3975/ab1a09
10.
Kazerouni
,
A. S.
,
Gadde
,
M.
,
Gardner
,
A.
,
Hormuth
,
D. A.
,
Jarrett
,
A. M.
,
Johnson
,
K. E.
,
Lima
,
E. A. F.
,
Lorenzo
,
G.
,
Phillips
,
C.
,
Brock
,
A.
, and
Yankeelov
,
T. E.
,
2020
, “
Integrating Quantitative Assays With Biologically Based Mathematical Modeling for Predictive Oncology
,”
iScience
,
23
(
12
), p.
101807
.10.1016/j.isci.2020.101807
11.
Yankeelov
,
T. E.
,
Atuegwu
,
N.
,
Hormuth
,
D.
,
Weis
,
J. A.
,
Barnes
,
S. L.
,
Miga
,
M. I.
,
Rericha
,
E. C.
, and
Quaranta
,
V.
,
2013
, “
Clinically Relevant Modeling of Tumor Growth and Treatment Response
,”
Sci. Transl. Med.
,
5
(
187
), p.
187ps9
.10.1126/scitranslmed.3005686
12.
Ayala-Hernández
,
L. E.
,
Gallegos
,
A.
,
Schucht
,
P.
,
Murek
,
M.
,
Pérez-Romasanta
,
L.
,
Belmonte-Beitia
,
J.
, and
Pérez-García
,
V. M.
,
2021
, “
Optimal Combinations of Chemotherapy and Radiotherapy in Low-Grade Gliomas: A Mathematical Approach
,”
J. Pers. Med.
,
11
(
10
), p.
1036
.10.3390/jpm11101036
13.
Hormuth
,
D. A.
,
Al Feghali
,
K. A.
,
Elliott
,
A. M.
,
Yankeelov
,
T. E.
, and
Chung
,
C.
,
2021
, “
Image-Based Personalization of Computational Models for Predicting Response of High-Grade Glioma to Chemoradiation
,”
Sci. Rep.
,
11
(
1
), p.
8520
.10.1038/s41598-021-87887-4
14.
Lipková
,
J.
,
Angelikopoulos
,
P.
,
Wu
,
S.
,
Alberts
,
E.
,
Wiestler
,
B.
,
Diehl
,
C.
,
Preibisch
,
C.
,
Pyka
,
T.
,
Combs
,
S. E.
,
Hadjidoukas
,
P.
,
Van Leemput
,
K.
,
Koumoutsakos
,
P.
,
Lowengrub
,
J.
, and
Menze
,
B.
,
2019
, “
Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference
,”
IEEE Trans. Medical Imaging
,
38
(
8
), pp.
1875
1884
.10.1109/TMI.2019.2902044
15.
Mang
,
A.
,
Bakas
,
S.
,
Subramanian
,
S.
,
Davatzikos
,
C.
, and
Biros
,
G.
,
2020
, “
Integrated Biophysical Modeling and Image Analysis: Application to Neuro-Oncology
,”
Annu. Rev. Biomed. Eng.
,
22
(
1
), pp.
309
341
.10.1146/annurev-bioeng-062117-121105
16.
Wang
,
C. H.
,
Rockhill
,
J. K.
,
Mrugala
,
M.
,
Peacock
,
D. L.
,
Lai
,
A.
,
Jusenius
,
K.
,
Wardlaw
,
J. M.
,
Cloughesy
,
T.
,
Spence
,
A. M.
,
Rockne
,
R.
,
Alvord
,
E. C.
, and
Swanson
,
K. R.
,
2009
, “
Prognostic Significance of Growth Kinetics in Newly Diagnosed Glioblastomas Revealed by Combining Serial Imaging With a Novel Biomathematical Model
,”
Cancer Res.
,
69
(
23
), pp.
9133
9140
.10.1158/0008-5472.CAN-08-3863
17.
Jarrett
,
A. M.
,
Hormuth
,
D. A.
,
Wu
,
C.
,
Kazerouni
,
A. S.
,
Ekrut
,
D. A.
,
Virostko
,
J.
,
Sorace
,
A. G.
,
DiCarlo
,
J. C.
,
Kowalski
,
J.
,
Patt
,
D.
,
Goodgame
,
B.
,
Avery
,
S.
, and
Yankeelov
,
T. E.
,
2020
, “
Evaluating Patient-Specific Neoadjuvant Regimens for Breast Cancer Via a Mathematical Model Constrained by Quantitative Magnetic Resonance Imaging Data
,”
Neoplasia
,
22
(
12
), pp.
820
830
.10.1016/j.neo.2020.10.011
18.
Vavourakis
,
V.
,
Eiben
,
B.
,
Hipwell
,
J. H.
,
Williams
,
N. R.
,
Keshtgar
,
M.
, and
Hawkes
,
D. J.
,
2016
, “
Multiscale Mechano-Biological Finite Element Modelling of Oncoplastic Breast Surgery––Numerical Study Towards Surgical Planning and Cosmetic Outcome Prediction
,”
PLoS One
,
11
(
7
), p.
e0159766
.10.1371/journal.pone.0159766
19.
Brady-Nicholls
,
R.
,
Nagy
,
J. D.
,
Gerke
,
T. A.
,
Zhang
,
T.
,
Wang
,
A. Z.
,
Zhang
,
J.
,
Gatenby
,
R. A.
, and
Enderling
,
H.
,
2020
, “
Prostate-Specific Antigen Dynamics Predict Individual Responses to Intermittent Androgen Deprivation
,”
Nat. Commun.
,
11
(
1
), p.
1750
.10.1038/s41467-020-15424-4
20.
Colli
,
P.
,
Gomez
,
H.
,
Lorenzo
,
G.
,
Marinoschi
,
G.
,
Reali
,
A.
, and
Rocca
,
E.
,
2021
, “
Optimal Control of Cytotoxic and Antiangiogenic Therapies on Prostate Cancer Growth
,”
Math. Models Methods Appl. Sci.
,
31
(
7
), pp.
1419
1468
.10.1142/S0218202521500299
21.
Lorenzo
,
G.
,
Hughes
,
T. J. R.
,
Dominguez-Frojan
,
P.
,
Reali
,
A.
, and
Gomez
,
H.
,
2019
, “
Computer Simulations Suggest That Prostate Enlargement Due to Benign Prostatic Hyperplasia Mechanically Impedes Prostate Cancer Growth
,”
Proc. Natl. Acad. Sci. U. S. Am.
,
116
(
4
), pp.
1152
1161
.10.1073/pnas.1815735116
22.
Lorenzo
,
G.
,
Scott
,
M. A.
,
Tew
,
K.
,
Hughes
,
T. J. R.
,
Zhang
,
Y. J.
,
Liu
,
L.
,
Vilanova
,
G.
, and
Gomez
,
H.
,
2016
, “
Tissue-Scale, Personalized Modeling and Simulation of Prostate Cancer Growth
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
48
), pp.
E7663
E7671
.10.1073/pnas.1615791113
23.
Wong
,
K. C. L.
,
Summers
,
R. M.
,
Kebebew
,
E.
, and
Yao
,
J.
,
2017
, “
Pancreatic Tumor Growth Prediction With Elastic-Growth Decomposition, Image-Derived Motion, and FDM-FEM Coupling
,”
IEEE Trans. Medical Imaging
,
36
(
1
), pp.
111
123
.10.1109/TMI.2016.2597313
24.
Chen
,
X.
,
Summers
,
R. M.
, and
Yao
,
J.
,
2013
, “
Kidney Tumor Growth Prediction by Coupling Reaction–Diffusion and Biomechanical Model
,”
IEEE Trans. Biomed. Eng.
,
60
(
1
), pp.
169
173
.10.1109/TBME.2012.2222027
25.
Brüningk
,
S. C.
,
Peacock
,
J.
,
Whelan
,
C. J.
,
Brady-Nicholls
,
R.
,
Hsiang-Hsuan
,
M. Y.
,
Sahebjam
,
S.
, and
Enderling
,
H.
,
2021
, “
Intermittent Radiotherapy as Alternative Treatment for Recurrent High Grade Glioma: A Modeling Study Based on Longitudinal Tumor Measurements
,”
Sci. Rep.
,
11
(
1
), p.
20219
.10.1038/s41598-021-99507-2
26.
Lorenzo
,
G.
,
Pérez-García
,
V. M.
,
Mariño
,
A.
,
Pérez-Romasanta
,
L. A.
,
Reali
,
A.
, and
Gomez
,
H.
,
2019
, “
Mechanistic Modelling of Prostate-Specific Antigen Dynamics Shows Potential for Personalized Prediction of Radiation Therapy Outcome
,”
J. R. Soc. Interface
,
16
(
157
), p.
20190195
.10.1098/rsif.2019.0195
27.
Zahid
,
M. U.
,
Mohsin
,
N.
,
Mohamed
,
A. S.
,
Caudell
,
J. J.
,
Harrison
,
L. B.
,
Fuller
,
C. D.
,
Moros
,
E. G.
, and
Enderling
,
H.
,
2021
, “
Forecasting Individual Patient Response to Radiation Therapy in Head and Neck Cancer With a Dynamic Carrying Capacity Model
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
111
(
3
), pp.
693
704
.10.1016/j.ijrobp.2021.05.132
28.
Lima
,
E.
,
Oden
,
J.
,
Wohlmuth
,
B.
,
Shahmoradi
,
A.
,
Hormuth
,
D.
, II
,
Yankeelov
,
T.
,
Scarabosio
,
L.
, and
Horger
,
T.
,
2017
, “
Selection and Validation of Predictive Models of Radiation Effects on Tumor Growth Based on Noninvasive Imaging Data
,”
Comput. Methods Appl. Mech. Eng.
,
327
, pp.
277
305
.10.1016/j.cma.2017.08.009
29.
Lima
,
E. A.
,
Faghihi
,
D.
,
Philley
,
R.
,
Yang
,
J.
,
Virostko
,
J.
,
Phillips
,
C. M.
, and
Yankeelov
,
T. E.
,
2021
, “
Bayesian Calibration of a Stochastic, Multiscale Agent-Based Model for Predicting In Vitro Tumor Growth
,”
PLoS Comput. Biol.
,
17
(
11
), p.
e1008845
.10.1371/journal.pcbi.1008845
30.
Jarrett
,
A. M.
,
Hormuth
,
D. A.
,
Barnes
,
S. L.
,
Feng
,
X.
,
Huang
,
W.
, and
Yankeelov
,
T. E.
,
2018
, “
Incorporating Drug Delivery Into an Imaging-Driven, Mechanics-Coupled Reaction Diffusion Model for Predicting the Response of Breast Cancer to Neoadjuvant Chemotherapy: Theory and Preliminary Clinical Results
,”
Phys. Med. Biol.
,
63
(
10
), p.
105015
.10.1088/1361-6560/aac040
31.
Kutz
,
J. N.
,
Brunton
,
S. L.
,
Brunton
,
B. W.
, and
Proctor
,
J. L.
,
2016
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
32.
Calmet
,
H.
,
Pastrana
,
D.
,
Lehmkuhl
,
O.
,
Yamamoto
,
T.
,
Kobayashi
,
Y.
,
Tomoda
,
K.
,
Houzeaux
,
G.
, and
Vázquez
,
M.
,
2020
, “
Dynamic Mode Decomposition Analysis of High-Fidelity CFD Simulations of the Sinus Ventilation
,”
Flow, Turbul. Combust.
,
105
(
3
), pp.
699
713
.10.1007/s10494-020-00156-8
33.
Barros
,
G. F.
,
Grave
,
M.
,
Viguerie
,
A.
,
Reali
,
A.
, and
Coutinho
,
A. L.
,
2021
, “
Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening Simulations
,”
Eng. Comput.
, epub.10.1007/s00366-021-01485-6
34.
Proctor
,
J. L.
, and
Eckhoff
,
P. A.
,
2015
, “
Discovering Dynamic Patterns From Infectious Disease Data Using Dynamic Mode Decomposition
,”
Int. Health
,
7
(
2
), pp.
139
145
.10.1093/inthealth/ihv009
35.
Viguerie
,
A.
,
Barros
,
G. F.
,
Grave
,
M.
,
Reali
,
A.
, and
Coutinho
,
A. L.
,
2022
, “
Coupled and Uncoupled Dynamic Mode Decomposition in Multi-Compartmental Systems With Applications to Epidemiological and Additive Manufacturing Problems
,”
Comput. Methods Appl. Mech. Eng.
,
391
, p.
114600
.10.1016/j.cma.2022.114600
36.
Kutz
,
J. N.
,
Fu
,
X.
, and
Brunton
,
S. L.
,
2016
, “
Multiresolution Dynamic Mode Decomposition
,”
SIAM J. Appl. Dyn. Syst.
,
15
(
2
), pp.
713
735
.10.1137/15M1023543
37.
Fonzi
,
N.
,
Brunton
,
S. L.
, and
Fasel
,
U.
,
2020
, “
Data-Driven Nonlinear Aeroelastic Models of Morphing Wings for Control: Data-Driven Nonlinear Aeroelastic Models
,”
Proc. R. Soc. A Math., Phys. Eng. Sci.
,
476
(
2239
), p.
20200079
.10.1098/rspa.2020.0079
38.
Alla
,
A.
,
Balzotti
,
C.
,
Briani
,
M.
, and
Cristiani
,
E.
,
2020
, “
Understanding Mass Transfer Directions Via Data-Driven Models With Application to Mobile Phone Data
,”
SIAM J. Appl. Dyn. Syst.
,
19
(
2
), pp.
1372
1391
.10.1137/19M1248479
39.
Artiles
,
W.
,
Carvalho
,
P.
, and
Kraenkel
,
R. A.
,
2008
, “
Patch-Size and Isolation Effects in the Fisher–Kolmogorov Equation
,”
J. Math. Biol.
,
57
(
4
), pp.
521
535
.10.1007/s00285-008-0174-2
40.
El-Hachem
,
M.
,
McCue
,
S. W.
,
Jin
,
W.
,
Du
,
Y.
, and
Simpson
,
M. J.
,
2019
, “
Revisiting the Fisher–Kolmogorov–Petrovsky–Piskunov Equation to Interpret the Spreading–Extinction Dichotomy
,”
Proc. R. Soc. A
,
475
(
2229
), p.
20190378
.10.1098/rspa.2019.0378
41.
Giometto
,
A.
,
Rinaldo
,
A.
,
Carrara
,
F.
, and
Altermatt
,
F.
,
2014
, “
Emerging Predictable Features of Replicated Biological Invasion Fronts
,”
Proc. Natl. Acad. Sci.
,
111
(
1
), pp.
297
301
.10.1073/pnas.1321167110
42.
Murray
,
J.
,
2003
,
Mathematical Biology II: Spatial Models and Biomedical Application
, 3rd ed.,
Springer
, Berlin.
43.
Murray
,
J.
,
2007
,
Mathematical Biology I: An Introduction
, 3rd ed.,
Springer
, Berlin.
44.
Beneduci
,
R.
,
Bilotta
,
E.
, and
Pantano
,
P.
,
2021
, “
A Unifying Nonlinear Probabilistic Epidemic Model in Space and Time
,”
Sci. Rep.
,
11
(
1
), pp.
1
11
.10.1038/s41598-021-93388-1
45.
Keller
,
J. P.
,
Gerardo-Giorda
,
L.
, and
Veneziani
,
A.
,
2013
, “
Numerical Simulation of a Susceptible–Exposed–Infectious Space-Continuous Model for the Spread of Rabies in Raccoons Across a Realistic Landscape
,”
J. Biol. Dyn.
,
7
(
sup1
), pp.
31
46
.10.1080/17513758.2012.742578
46.
Guozhen
,
Z.
,
1982
, “
Experiments on Director Waves in Nematic Liquid Crystals
,”
Phys. Rev. Lett.
,
49
(
18
), pp.
1332
1335
.10.1103/PhysRevLett.49.1332
47.
Aronson
,
D. G.
, and
Weinberger
,
H. F.
,
1978
, “
Multidimensional Nonlinear Diffusion Arising in Population Genetics
,”
Adv. Math.
,
30
(
1
), pp.
33
76
.10.1016/0001-8708(78)90130-5
48.
Henry
,
D.
,
2006
,
Geometric Theory of Semilinear Parabolic Equations
, Lecture Notes in Mathematics, A. Dold and B. Eckmann, eds., Vol.
840
,
Springer
, Berlin/Heidelberg.
49.
Alla
,
A.
, and
Kutz
,
J. N.
,
2017
, “
Nonlinear Model Order Reduction Via Dynamic Mode Decomposition
,”
SIAM J. Sci. Comput.
,
39
(
5
), pp.
B778
B796
.10.1137/16M1059308
50.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.10.2514/1.J056060
51.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2013
,
Matrix Computations
,
4th ed., The Johns Hopkins Press
, Baltimore, MD.
52.
Eckart
,
C.
, and
Young
,
G.
,
1936
, “
The Approximation of One Matrix by Another of Lower Rank
,”
Psychometrika
,
1
(
3
), pp.
211
218
.10.1007/BF02288367
53.
Kirk
,
B. S.
,
Peterson
,
J. W.
,
Stogner
,
R. H.
, and
Carey
,
G. F.
,
2006
, “
Libmesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations
,”
J. Eng. Comput.
,
22
(
3–4
), pp.
237
254
.10.1007/s00366-006-0049-3
54.
Grave
,
M.
,
Camata
,
J. J.
, and
Coutinho
,
A. L.
,
2020
, “
A New Convected Level-Set Method for Gas Bubble Dynamics
,”
Comput. Fluids
,
209
, p.
104667
.10.1016/j.compfluid.2020.104667
55.
Rossa
,
A. L.
, and
Coutinho
,
A. L.
,
2013
, “
Parallel Adaptive Simulation of Gravity Currents on the Lock-Exchange Problem
,”
Comput. Fluids
,
88
, pp.
782
794
.10.1016/j.compfluid.2013.06.008
56.
Saad
,
Y.
, and
Schultz
,
M. H.
,
1986
, “
Gmres: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
7
(
3
), pp.
856
869
.10.1137/0907058
57.
Barros
,
G. F.
,
Grave
,
M.
,
Viguerie
,
A.
,
Reali
,
A.
, and
Coutinho
,
A. L.
,
2021
, “
Enhancing Dynamic Mode Decomposition Data Pipeline
,”
RAMSES: Reduced Order Models, Approximation Theory, Mach. Learning; Surrogates, Emulators Simulators
, International School for Advanced Studies, Trieste, Italy, Dec. 14–17.
58.
Baldock
,
A. L.
,
Ahn
,
S.
,
Rockne
,
R.
,
Johnston
,
S.
,
Neal
,
M.
,
Corwin
,
D.
,
Clark-Swanson
,
K.
,
Sterin
,
G.
,
Trister
,
A. D.
,
Malone
,
H.
,
Ebiana
,
V.
,
Sonabend
,
A. M.
,
Mrugala
,
M.
,
Rockhill
,
J. K.
,
Silbergeld
,
D. L.
,
Lai
,
A.
,
Cloughesy
,
T.
,
McKhann
,
G. M.
,
Bruce
,
J. N.
,
Rostomily
,
R. C.
,
Canoll
,
P.
, and
Swanson
,
K. R.
,
2014
, “
Patient-Specific Metrics of Invasiveness Reveal Significant Prognostic Benefit of Resection in a Predictable Subset of Gliomas
,”
PLoS One
,
9
(
10
), p.
e99057
.10.1371/journal.pone.0099057
59.
Agosti
,
A.
,
Giverso
,
C.
,
Faggiano
,
E.
,
Stamm
,
A.
, and
Ciarletta
,
P.
,
2018
, “
A Personalized Mathematical Tool for Neuro-Oncology: A Clinical Case Study
,”
Int. J. Non-Linear Mech.
,
107
, pp.
170
181
.10.1016/j.ijnonlinmec.2018.06.004
60.
Lima
,
E.
,
Oden
,
J.
,
Hormuth
,
D.
,
Yankeelov
,
T.
, and
Almeida
,
R.
,
2016
, “
Selection, Calibration, and Validation of Models of Tumor Growth
,”
Math. Models Methods Appl. Sci.
,
26
(
12
), pp.
2341
2368
.10.1142/S021820251650055X
61.
Andreuzzi
,
F.
,
Demo
,
N.
, and
Rozza
,
G.
,
2021
, “
A Dynamic Mode Decomposition Extension for the Forecasting of Parametric Dynamical Systems
,” arXiv preprint
arXiv:2110.09155
.10.48550/arXiv.2110.09155
62.
Gao
,
Z.
,
Lin
,
Y.
,
Sun
,
X.
, and
Zeng
,
X.
,
2022
, “
A Reduced Order Method for Nonlinear Parameterized Partial Differential Equations Using Dynamic Mode Decomposition Coupled With k-Nearest-Neighbors Regression
,”
J. Comput. Phys.
,
452
, p.
110907
.10.1016/j.jcp.2021.110907
63.
Hess
,
M. W.
,
Quaini
,
A.
, and
Rozza
,
G.
,
2022
, “
A Data-Driven Surrogate Modeling Approach for Time-Dependent Incompressible Navier-Stokes Equations With Dynamic Mode Decomposition and Manifold Interpolation
,” arXiv preprint
arXiv:2201.10872
.10.48550/arXiv.2201.10872
You do not currently have access to this content.