Abstract

Atherosclerosis is a systemic disease that leads to accumulation of deposits, known as atherosclerotic plaques, within the walls of the carotids. In particular, three types of plaque can be distinguished: soft, fibrous, and calcific. Most of the computational studies who investigated the interplay between the plaque and the blood flow on patient-specific geometries used nonstandard medical images to directly delineate and segment the plaque and its components. However, these techniques are not so widely available in the clinical practice. In this context, the aim of our work was twofold: (i) to propose a new geometric tool that allowed to reconstruct a plausible plaque in the carotids from standard images and (ii) to perform three-dimensional (3D) fluid–structure interaction (FSI) simulations where we compared some fluid-dynamic and structural quantities among 15 patients characterized by different typologies of plaque. Our results highlighted that both the morphology and the mechanical properties of different plaque components play a crucial role in determining the vulnerability of the plaque.

References

1.
Libby
,
P.
,
Buring
,
J. E.
,
Badimon
,
L.
,
Hansson
,
G. K.
,
Deanfield
,
J.
,
Bittencourt
,
M. S.
,
Tokgözoğlu
,
L.
, and
Lewis
,
E. F.
,
2019
, “
Atherosclerosis
,”
Nat. Rev. Dis. Primers
,
5
(
1
), pp.
1
18
.10.1038/s41572-019-0106-z
2.
Schneider
,
A. T.
,
Kissela
,
B.
,
Woo
,
D.
,
Kleindorfer
,
D.
,
Alwell
,
K.
,
Miller
,
R.
,
Szaflarski
,
J.
,
Gebel
,
J.
,
Khoury
,
J.
,
Shukla
,
R.
,
Moomaw
,
C.
,
Pancioli
,
A.
,
Jauch
,
E.
, and
Broderick
,
J.
,
2004
, “
Ischemic Stroke Subtypes: A Population-Based Study of Incidence Rates Among Blacks and Whites
,”
Stroke
,
35
(
7
), pp.
1552
1556
.10.1161/01.STR.0000129335.28301.f5
3.
Uchino
,
K.
,
Risser
,
J. M. H.
,
Smith
,
M. A.
,
Moyé
,
L. A.
, and
Morgenstern
,
L. B.
,
2004
, “
Ischemic Stroke Subtypes Among Mexican Americans and non-Hispanic Whites: The BASIC Project
,”
Neurology
,
63
(
3
), pp.
574
576
.10.1212/01.WNL.0000133212.99040.07
4.
Maher
,
E.
,
Creane
,
A.
,
Sultan
,
S.
,
Hynes
,
N.
,
Lally
,
C.
, and
Kelly
,
D.
,
2009
, “
Tensile and Compressive Properties of Fresh Human Carotid Atherosclerotic Plaques
,”
J. Biomech.
,
42
(
16
), pp.
2760
2767
.10.1016/j.jbiomech.2009.07.032
5.
Ebenstein
,
D. M.
,
Coughlin
,
D.
,
Chapman
,
J.
,
Li
,
C.
, and
Pruitt
,
L. A.
,
2009
, “
Nanomechanical Properties of Calcification, Fibrous Tissue, and Hematoma From Atherosclerotic Plaques
,”
J. Biomed. Mater. Res. Part A
,
91A
(
4
), pp.
1028
1037
.10.1002/jbm.a.32321
6.
Maher
,
E.
,
Creane
,
A.
,
Sultan
,
P. S.
,
Hynes
,
N.
,
Lally
,
C.
, and
Kelly
,
D.
,
2011
, “
Inelasticity of Human Carotid Atherosclerotic Plaque
,”
Ann. Biomed. Eng.
,
39
(
9
), pp.
2445
2455
.10.1007/s10439-011-0331-4
7.
Brinjikji
,
W.
,
Huston
,
J.
,
Rabinstein
,
A.
,
Kim
,
G.-M.
,
Lerman
,
A.
, and
Lanzino
,
G.
,
2016
, “
Contemporary Carotid Imaging: From Degree of Stenosis to Plaque Vulnerability
,”
J. Neurosurg.
,
124
(
1
), pp.
27
42
.10.3171/2015.1.JNS142452
8.
Lopes
,
D.
,
Puga
,
H.
,
Teixeira
,
J.
, and
Lima
,
R.
,
2020
, “
Blood Flow Simulations in Patient-Specific Geometries of the Carotid Artery: A Systematic Review
,”
J. Biomech.
,
111
, p.
110019
.10.1016/j.jbiomech.2020.110019
9.
Ku
,
D.
,
Giddens
,
D.
,
Zarins
,
C.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arterioscler., Thromb., Vasc. Biol.
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
10.
Hyun
,
S.
,
Kleinstreuer
,
C.
, and
Archie
,
J.
,
2000
, “
Computer Simulation and Geometric Design of Endarterectomized Carotid Artery Bifurcations
,”
Crit. Rev. Biomed. Eng.
,
28
(
1–2
), pp.
53
59
.10.1615/CritRevBiomedEng.v28.i12.100
11.
Younis
,
H.
,
Kaazempur-Mofrad
,
M.
,
Chan
,
R.
,
Isasi
,
A.
,
Hinton
,
D.
,
Chau
,
A.
,
Kim
,
L.
, and
Kamm
,
R.
,
2004
, “
Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and Its Consequences for Atherogenesis: Investigation of Inter-Individual Variation
,”
Biomech. Model. Mechanobiol.
,
3
(
1
), pp.
17
32
.10.1007/s10237-004-0046-7
12.
Morbiducci
,
U.
,
Gallo
,
D.
,
Massai
,
D.
,
Consolo
,
F.
,
Ponzini
,
R.
,
Antiga
,
L.
,
Bignardi
,
C.
,
Deriu
,
M.
, and
Redaelli
,
A.
,
2010
, “
Outflow Conditions for Image-Based Hemodynamic Models of the Carotid Bifurcation: Implications for Indicators of Abnormal Flow
,”
ASME J. Biomech. Eng.
,
132
(
9
), p.
091005
.10.1115/1.4001886
13.
Domanin
,
M.
,
Gallo
,
D.
,
Vergara
,
C.
,
Biondetti
,
P.
,
Forzenigo
,
L.
, and
Morbiducci
,
U.
,
2019
, “
Prediction of Long Term Restenosis Risk After Surgery in the Carotid Bifurcation by Hemodynamic and Geometric Analysis
,”
Ann. Biomed. Eng.
,
47
(
4
), pp.
1129
1140
.10.1007/s10439-019-02201-8
14.
Groen
,
H.
,
Gijsen
,
F.
,
Lugt
,
A.
,
Ferguson
,
M.
,
Hatsukami
,
T.
,
van der Steen
,
A.
,
Yuan
,
C.
, and
Wentzel
,
J.
,
2007
, “
Plaque Rupture in the Carotid Artery Is Localized at the High Shear Stress Region: A Case Report
,”
Stroke
,
38
(
8
), pp.
2379
2381
.10.1161/STROKEAHA.107.484766
15.
Ohayon
,
J.
,
Finet
,
G.
,
Gharib
,
A.
,
Herzka
,
D.
,
Tracqui
,
P.
,
Heroux
,
J.
,
Rioufol
,
G.
,
Kotys
,
M.
,
Elagha
,
A.
, and
Pettigrew
,
R.
,
2008
, “
Necrotic Core Thickness and Positive Arterial Remodeling Index: Emergent Biomechanical Factors for Evaluating the Risk of Plaque Rupture
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
295
, pp.
717
727
.10.1152/ajpheart.00005.2008
16.
Teng
,
Z.
,
Canton
,
G.
,
Yuan
,
C.
,
Ferguson
,
M.
,
Yang
,
C.
,
Huang
,
X.
,
Zheng
,
J.
,
Woodard
,
P.
, and
Tang
,
D.
,
2010
, “
3D Critical Plaque Wall Stress Is a Better Predictor of Carotid Plaque Rupture Sites Than Flow Shear Stress: An In Vivo MRI-Based 3D FSI Study
,”
ASME J. Biomech. Eng.
,
132
(
3
), p.
031007
.10.1115/1.4001028
17.
Groen
,
H.
,
Simons
,
L.
,
Bouwhuijsen
,
Q.
,
Bosboom
,
E.
,
Gijsen
,
F.
,
van der Giessen
,
A.
,
van de Vosse
,
F.
,
Hofman
,
A.
,
van der Steen
,
A.
,
Witteman
,
J.
,
Lugt
,
A.
, and
Wentzel
,
J.
,
2010
, “
MRI Based Quantification of Outflow Boundary Conditions for Computational Fluid Dynamics of Stenosed Human Carotid Arteries
,”
J. Biomech.
,
43
(
12
), pp.
2332
2338
.10.1016/j.jbiomech.2010.04.039
18.
Lorenzini
,
G.
, and
Casalena
,
E.
,
2008
, “
CFD Analysis of Pulsatile Blood Flow in an Atherosclerotic Human Artery With Eccentric Plaques
,”
J. Biomech.
,
41
(
9
), pp.
1862
1870
.10.1016/j.jbiomech.2008.04.009
19.
Jabbar
,
A.
,
Ali
,
R.
,
Parvez
,
K.
, and
Niazi
,
U.
,
2012
, “
Three-Dimensional Numerical Analysis of Pulsatile Blood Flow Around Different Plaque Shapes in Human Carotid Artery
,”
Int. J. Biosci., Biochem. Bioinf.
,
2
(
5
), pp.
305
308
.10.7763/IJBBB.2012.V2.122
20.
Zhou
,
H.
,
Meng
,
L.
,
Zhou
,
W.
,
Xin
,
L.
,
Xia
,
X.
,
Li
,
S.
,
Zheng
,
H.
, and
Niu
,
L.
,
2017
, “
Computational and Experimental Assessment of Influences of Hemodynamic Shear Stress on Carotid Plaque
,”
BioMed. Eng. OnLine
,
16
(
1
), pp.
1
11
.10.1186/s12938-017-0386-Z
21.
Stroud
,
J. S.
,
Berger
,
S. A.
, and
Saloner
,
D.
,
2002
, “
Numerical Analysis of Flow Through a Severely Stenotic Carotid Artery Bifurcation
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
9
20
.10.1115/1.1427042
22.
Lee
,
S.
,
Lee
,
S.-W.
,
Fischer
,
P.
,
Bassiouny
,
H.
, and
Loth
,
F.
,
2008
, “
Direct Numerical Simulation of Transitional Flow in a Stenosed Carotid Bifurcation
,”
J. Biomech.
,
41
(
11
), pp.
2551
2561
.10.1016/j.jbiomech.2008.03.038
23.
Sui
,
B.
,
Gao
,
P.
,
Lin
,
Y.
,
Jing
,
L.
,
Sun
,
S.
, and
Qin
,
H.
,
2015
, “
Hemodynamic Parameters Distribution of Upstream, Stenosis Center, and Downstream Sides of Plaques in Carotid Artery With Different Stenosis: A MRI and CFD Study
,”
Acta Radiol.
,
56
(
3
), pp.
347
354
.10.1177/0284185114526713
24.
Compagne
,
K.
,
Dilba
,
K.
,
Postema
,
E.
,
Es
,
A.
,
Emmer
,
B.
,
Majoie
,
C.
,
Zwam
,
W.
,
Dippel
,
D.
,
Wentzel
,
J.
,
Lugt
,
A.
, and
Gijsen
,
F.
,
2019
, “
Flow Patterns in Carotid Webs: A Patient-Based Computational Fluid Dynamics Study
,”
Am. J. Neuroradiol.
,
40
(
4
), pp.
703
708
.10.3174/ajnr.A6012
25.
Guerciotti
,
B.
,
Vergara
,
C.
,
Azzimonti
,
L.
,
Forzenigo
,
L.
,
Buora
,
A.
,
Biondetti
,
P.
, and
Domanin
,
M.
,
2016
, “
Computational Study of the Fluid-Dynamics in Carotids Before and After Endarterectomy
,”
J. Biomech.
,
49
(
1
), pp.
26
38
.10.1016/j.jbiomech.2015.11.009
26.
Tang
,
D.
,
Yang
,
C.
, and
Ku
,
D.
,
1999
, “
A 3-D Thin-Wall Model With Fluid-Structure Interactions for Blood Flow in Carotid Arteries With Symmetric and Asymmetric Stenoses
,”
Comput. Struct.
,
72
(
1–3
), pp.
357
377
.10.1016/S0045-7949(99)00019-X
27.
Tang
,
D.
,
Yang
,
C.
,
Huang
,
Y.
, and
Ku
,
D.
,
1999
, “
Wall Stress and Strain Analysis Using a Three-Dimensional Thick-Wall Model With Fluid-Structure Interactions for Blood Flow in Carotid Arteries With Stenoses
,”
Comput. Struct.
,
72
(
1–3
), pp.
341
356
.10.1016/S0045-7949(99)00009-7
28.
Alegre-Martínez
,
C.
,
Choi
,
K.-S.
,
Tammisola
,
O.
, and
McNally
,
D.
,
2019
, “
On the Axial Distribution of Plaque Stress: Influence of Stenosis Severity, Lipid Core Stiffness, Lipid Core Length and Fibrous Cap Stiffness
,”
Med. Eng. Phys.
,
68
, pp.
76
84
.10.1016/j.medengphy.2019.02.015
29.
Kock
,
S. A.
,
Nygaard
,
J. V.
,
Eldrup
,
N.
,
Fründ
,
E.-T.
,
Klærke
,
A.
,
Paaske
,
W. P.
,
Falk
,
E.
, and
Yong Kim
,
W.
,
2008
, “
Mechanical Stresses in Carotid Plaques Using MRI-Based Fluid-Structure Interaction Models
,”
J. Biomech.
,
41
(
8
), pp.
1651
1658
.10.1016/j.jbiomech.2008.03.019
30.
Thrysøe
,
S. A.
,
Oikawa
,
M.
,
Yuan
,
C.
,
Eldrup
,
N.
,
Klærke
,
A.
,
Paaske
,
W. P.
,
Falk
,
E.
,
Kim
,
W. Y.
, and
Nygaard
,
J. V.
,
2010
, “
Longitudinal Distribution of Mechanical Stresses in Carotid Plaques of Symptomatic Patients
,”
Stroke
,
41
(
5
), pp.
1041
1043
.10.1161/STROKEAHA.109.571588
31.
Lee
,
S.
,
Kang
,
S.
,
Hur
,
N.
, and
Jeong
,
S.-K.
,
2012
, “
A Fluid-Structure Interaction Analysis on Hemodynamics in Carotid Artery Based on Patient-Specific Clinical Data
,”
J. Mech. Sci. Technol.
,
26
(
12
), pp.
3821
3831
.10.1007/s12206-012-1008-0
32.
Pozzi
,
S.
,
Domanin
,
M.
,
Forzenigo
,
L.
,
Votta
,
E.
,
Zunino
,
E.
,
Redaelli
,
A.
, and
Vergara
,
C.
,
2021
, “
A Surrogate Model for Plaque Modeling in Carotids Based on Robin Conditions Calibrated by Cine MRI Data
,”
Int. J. Numer. Methods Biomed. Eng.
, p.
e3447
.10.1002/cnm.3447
33.
Tao
,
X.
,
Gao
,
P.
,
Jing
,
L.
,
Lin
,
Y.
, and
Sui
,
B.
,
2015
, “
Subject-Specific Fully-Coupled and One-Way Fluid-Structure Interaction Models for Modeling of Carotid Atherosclerotic Plaques in Humans
,”
Med. Sci. Monit.
,
21
, pp.
3279
3290
.10.12659/MSM.895137
34.
Gao
,
H.
, and
Long
,
Q.
,
2008
, “
Effects of Varied Lipid Core Volume and Fibrous Cap Thickness on Stress Distribution in Carotid Arterial Plaques
,”
J. Biomech.
,
41
(
14
), pp.
3053
3059
.10.1016/j.jbiomech.2008.07.011
35.
Gao
,
H.
,
Long
,
Q.
,
Graves
,
M.
,
Gillard
,
J.
, and
Li
,
Z.
,
2009
, “
Carotid Arterial Plaque Stress Analysis Using Fluid-Structure Interactive Simulation Based on In-Vivo Magnetic Resonance Images of Four Patients
,”
J. Biomech.
,
42
(
10
), pp.
1416
1423
.10.1016/j.jbiomech.2009.04.010
36.
Tang
,
D.
,
Teng
,
Z.
,
Canton
,
G.
,
Yang
,
C.
,
Ferguson
,
M.
,
Huang
,
X.
,
Zheng
,
J.
,
Woodard
,
P.
, and
Yuan
,
C.
,
2009
, “
Sites of Rupture in Human Atherosclerotic Carotid Plaques Are Associated With High Structural Stresses an In Vivo MRI-Based 3D Fluid-Structure Interaction Study
,”
Stroke
,
40
(
10
), pp.
3258
3263
.10.1161/STROKEAHA.109.558676
37.
Tang
,
D.
,
Yang
,
C.
,
Huang
,
S.
,
Mani
,
V.
,
Zheng
,
J.
,
Woodard
,
P.
,
Robson
,
P.
,
Teng
,
Z.
,
Dweck
,
M.
, and
Fayad
,
Z.
,
2017
, “
Cap Inflammation Leads to Higher Plaque Cap Strain and Lower Cap Stress: An MRI-PET/CT-Based FSI Modeling Approach
,”
J. Biomech.
,
50
, pp.
121
129
.10.1016/j.jbiomech.2016.11.011
38.
Hassan
,
N.
, and
Mahmoud
,
A.
,
2019
, “
Three Dimensional Fluid Structure Interaction Analysis of Carotid Artery Models With Different Calcification Patterns
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Berlin, Germany, July 23–27, pp.
7019
7022
.10.1109/EMBC.2019.8856813
39.
Xu
,
K.
,
Yu
,
L.
,
Wan
,
J.
,
Wang
,
S.
, and
Lu
,
H.
,
2020
, “
The Influence of the Elastic Modulus of the Plaque in Carotid Artery on the Computed Results of FFR CT
,”
Comput. Methods Biomech. Biomed. Eng.
,
23
(
5
), pp.
201
211
.10.1080/10255842.2019.1710741
40.
Group
,
W.
,
Naylor
,
R.
,
Ricco
,
J.-B.
,
Borst
,
G.
,
Debus
,
S.
,
Haro
,
J.
,
Halliday
,
A.
,
Hamilton
,
G.
,
Kakisis
,
J.
,
Kakkos
,
S.
,
Lepidi
,
S.
,
Markus
,
H.
,
McCabe
,
D.
,
Roy
,
J.
,
Sillesen
,
H.
,
van den Berg
,
J.
,
Vermassen
,
F.
,
Committee
,
E.
,
Kolh
,
P.
, and
Venermo
,
M.
,
2017
, “
Management of Atherosclerotic Carotid and Vertebral Artery Disease: 2017 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS)
,”
Eur. J. Vasc. Endovasc. Surg.
,
55
(
1
), pp.
1
80
.10.1016/j.ejvs.2017.06.02
41.
Barnett
,
H.
,
Taylor
,
D.
,
Haynes
,
R.
,
Sackett
,
D.
,
Peerless
,
S.
,
Ferguson
,
G.
,
Fox
,
A.
,
Rankin
,
R.
,
Hachinski
,
V.
,
Wiebers
,
D.
, and
Eliasziw
,
M.
,
1991
, “
Beneficial Effect of Carotid Endarterectomy in Symptomatic Patients With High-Grade Carotid Stenosis
,”
New Engl. J. Med.
,
325
(
7
), pp.
445
453
.10.1056/NEJM199108153250701
42.
Gray-Weale
,
A.
,
Graham
,
J.
,
Burnett
,
J.
,
Bryne
,
K.
, and
Lusby
,
R.
,
1988
, “
Carotid Artery Atheroma: Comparison of Preoperative B-Mode Ultrasound Appearance With Carotid Endarterectomy Specimen Pathology
,”
J. Cardiovasc. Surg.
,
29
, pp.
676
681
.https://pubmed.ncbi.nlm.nih.gov/3062007/
43.
Izzo, R., Steinman, D., Manini, S., and Antiga, L.,
2018
, “
The Vascular Modeling Toolkit: A Python Library for the Analysis of Tubular Structures in Medical Images
,”
J. Open Source Software
, 3(25), p. 745.10.21105/joss.00745
44.
Donnan
,
G.
,
Davis
,
S.
,
Chambers
,
B.
, and
Gates
,
P.
,
1998
, “
Surgery for Prevention of Stroke
,”
Lancet
,
351
(
9113
), pp.
1372
1373
.10.1016/S0140-6736(98)22019-8
45.
Saba
,
L.
, and
Mallarini
,
G.
,
2010
, “
A Comparison Between NASCET and ECST Methods in the Study of Carotids Evaluation Using Multi-Detector-Row CT Angiography
,”
Eur. J. Radiol.
,
76
(
1
), pp.
42
47
.10.1016/j.ejrad.2009.04.064
46.
Harloff
,
A.
,
Zech
,
T.
,
Frydrychowicz
,
A.
,
Schumacher
,
M.
,
Schöllhorn
,
J.
,
Hennig
,
J.
,
Weiller
,
C.
, and
Markl
,
M.
,
2009
, “
Carotid Intima-Media Thickness and Distensibility Measured by MRI at 3T Versus High-Resolution Ultrasound
,”
Eur. Radiol.
,
19
(
6
), pp.
1470
1479
.10.1007/s00330-009-1295-8
47.
Li
,
Z.-Y.
,
Howarth
,
S. P.
,
Tang
,
T.
, and
Gillard
,
J. H.
,
2006
, “
How Critical Is Fibrous Cap Thickness to Carotid Plaque Stability?
,”
Stroke
,
37
(
5
), pp.
1195
1199
.10.1161/01.STR.0000217331.61083.3b
48.
Thrysoe
,
S. A.
,
Stegmann
,
A. F.
,
Eldrup
,
N.
,
Klærke
,
A.
,
Paaske
,
W.
,
Kim
,
W. Y.
, and
Nygaard
,
J. V.
,
2012
, “
The Effect of Carotid Plaque Morphology on Longitudinal Fibrous Cap Stress Levels
,”
World J. Mech.
,
02
(
04
), pp.
216
223
.10.4236/wjm.2012.24026
49.
Athanasiou
,
L. S.
,
Fotiadis
,
D. I.
, and
Michalis
,
L. K.
,
2017
, “
2—Principles of Coronary Imaging Techniques
,”
Atherosclerotic Plaque Characterization Methods Based on Coronary Imaging
,
L. S.
Athanasiou
,
D. I.
Fotiadis
, and
L. K.
Michalis
, eds.,
Academic Press
,
Oxford, UK
, pp.
23
47
.
50.
Friedrich
,
G. J.
,
Moes
,
N. Y.
,
Mühlberger
,
V. A.
,
Gabl
,
C.
,
Mikuz
,
G.
,
Hausmann
,
D.
,
Fitzgerald
,
P. J.
, and
Yock
,
P. G.
,
1994
, “
Detection of Intralesional Calcium by Intracoronary Ultrasound Depends on the Histologic Pattern
,”
Am. Heart J.
,
128
(
3
), pp.
435
441
.10.1016/0002-8703(94)90614-9
51.
Li
,
Z.-Y.
,
Howarth
,
S.
,
Tang
,
T.
,
Graves
,
M.
,
U-King-Im
,
J.
, and
Gillard
,
J.
,
2007
, “
Does Calcium Deposition Play a Role in the Stability of Atheroma? Location May Be the Key
,”
Cerebrovasc. Dis. (Basel, Switzerland)
,
24
(
5
), pp.
452
459
.10.1159/000108436
52.
Kral
,
B.
,
Becker
,
L.
,
Vaidya
,
D.
,
Yanek
,
L.
,
Qayyum
,
R.
,
Zimmerman
,
S.
,
Dey
,
D.
,
Berman
,
D.
,
Moy
,
T.
,
Fishman
,
E.
, and
Becker
,
D.
,
2014
, “
Noncalcified Coronary Plaque Volumes in Healthy People With a Family History of Early Onset Coronary Artery Disease
,”
Circ. Cardiovasc. Imaging
,
7
(
3
), pp.
446
453
.10.1161/CIRCIMAGING.113.000980
53.
Cilla
,
M.
,
Monterde
,
D.
,
Peña
,
E.
, and
Martínez
,
M.
,
2013
, “
Does Microcalcification Increase the Risk of Rupture?
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
227
(
5
), pp.
588
599
.10.1177/0954411913479530
54.
Hirt
,
C.
,
Amsden
,
A.
, and
Cook
,
J.
,
1974
, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
,
14
(
3
), pp.
227
253
.10.1016/0021-9991(74)90051-5
55.
Donea
,
J.
,
Giuliani
,
S.
, and
Halleux
,
J.
,
1982
, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
33
(
1–3
), pp.
689
723
.10.1016/0045-7825(82)90128-1
56.
Finet
,
G.
,
Ohayon
,
J.
, and
Rioufol
,
G.
,
2004
, “
Biomechanical Interaction Between Cap Thickness, Lipid Core Composition and Blood Pressure in Vulnerable Coronary Plaque: Impact on Stability or Instability
,”
Coron. Artery Dis.
,
15
, pp.
13
20
.10.1097/00019501-200402000-00003
57.
Williamson
,
S. D.
,
Lam
,
Y.
,
Younis
,
H. F.
,
Huang
,
H.
,
Patel
,
S.
,
Kaazempur-Mofrad
,
M. R.
, and
Kamm
,
R. D.
,
2003
, “
On the Sensitivity of Wall Stresses in Diseased Arteries to Variable Material Properties
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
147
155
.10.1115/1.1537736
58.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J.-P.
, and
Rodríguez-Ferran
,
A.
,
2004
,
Arbitrary Lagrangian-Eulerian Methods
,
American Cancer Society
, Chichester, UK, pp.
413
437
.
59.
Formaggia
,
L.
,
Quarteroni
,
A.
, and
Veneziani
,
A.
,
2009
,
Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System
, Vol.
1
, Springer-Verlag, Milan, Italy.
60.
Küttler
,
U.
, and
Wall
,
W.
,
2008
, “
Fixed-Point Fluid-Structure Interaction Solvers With Dynamic Relaxation
,”
Comput. Mech.
,
43
, pp.
61
72
.10.1007/s00466-008-0255-5
61.
Nobile
,
F.
, and
Vergara
,
C.
,
2012
, “
Partitioned Algorithms for Fluid-Structure Interaction Problems in Haemodynamics
,”
Milan J. Math.
,
80
(
2
), pp.
443
467
.10.1007/s00032-012-0194-7
62.
Quarteroni
,
A.
,
Manzoni
,
A.
, and
Vergara
,
C.
,
2017
, “
The Cardiovascular System: Mathematical Modelling, Numerical Algorithms and Clinical Applications
,”
Acta Numer.
,
26
, pp.
365
590
.10.1017/S0962492917000046
63.
Tezduyar
,
T.
,
1992
, “
Stabilized Finite Element Formulations for Incompressible Flow Computations
,”
Adv. Appl. Mech.
,
28
, pp.
1
44
.10.1016/S0065-2156(08)70153-4
64.
Forti
,
D.
, and
Dede
,
L.
,
2015
, “
Semi-Implicit BDF Time Discretization of the Navier-Stokes Equations With VMS-LES Modeling in a High Performance Computing Framework
,”
Comput. Fluids
,
117
, pp.
168
182
.10.1016/j.compfluid.2015.05.011
65.
Crosetto
,
P.
,
Deparis
,
S.
,
Fourestey
,
G.
, and
Quarteroni
,
A.
,
2011
, “
Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics
,”
SIAM J. Sci. Comput.
,
33
(
4
), pp.
1598
1622
.10.1137/090772836
66.
Westerhof
,
N.
,
Lankhaar
,
J.-W.
, and
Westerhof
,
B.
,
2009
, “
The Arterial Windkessel
,”
Med. Biol. Eng. Comput.
,
47
(
2
), pp.
131
141
.10.1007/s11517-008-0359-2
67.
Quarteroni
,
A.
,
Veneziani
,
A.
, and
Vergara
,
C.
,
2016
, “
Geometric Multiscale Modeling of the Cardiovascular System, Between Theory and Practice
,”
Comput. Methods Appl. Mech. Eng.
,
302
, pp.
193
252
.10.1016/j.cma.2016.01.007
68.
Nobile
,
F.
, and
Vergara
,
C.
,
2008
, “
An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions
,”
SIAM J. Sci. Comput.
,
30
(
2
), pp.
731
763
.10.1137/060678439
69.
Moireau
,
P.
,
Xiao
,
N.
,
Astorino
,
M.
,
Figueroa
,
C.
,
Chapelle
,
D.
,
Taylor
,
C.
, and
Gerbeau
,
J.-F.
,
2012
, “
External Tissue Support and Fluid-Structure Simulation in Blood Flows
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
1
18
.10.1007/s10237-011-0289-z
70.
Passerini
,
T.
,
Quaini
,
A.
,
Villa
,
U.
,
Veneziani
,
A.
, and
Canic
,
S.
,
2013
, “
Validation of an Open Source Framework for the Simulation of Blood Flow in Rigid and Deformable Vessels
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
11
), pp.
1192
1213
.10.1002/cnm.2568
71.
Faggiano
,
E.
,
Antiga
,
L.
,
Puppini
,
G.
,
Quarteroni
,
A.
,
Luciani
,
G.
, and
Vergara
,
C.
,
2013
, “
Helical Flows and Asymmetry of Blood Jet in Dilated Ascending Aorta With Normally Functioning Bicuspid Valve
,”
Biomech. Model. Mechanobiol.
,
12
(
4
), pp.
801
813
.10.1007/s10237-012-0444-1
72.
Nobile
,
F.
,
Pozzoli
,
M.
, and
Vergara
,
C.
,
2013
, “
Time Accurate Partitioned Algorithms for the Solution of Fluid-Structure Interaction Problems in Haemodynamics
,”
Comput. Fluids
,
86
, pp.
470
482
.10.1016/j.compfluid.2013.07.031
73.
Balzani
,
D.
,
Deparis
,
S.
,
Fausten
,
S.
,
Forti
,
D.
,
Heinlein
,
A.
,
Klawonn
,
A.
,
Quarteroni
,
A.
,
Rheinbach
,
O.
, and
Schröder
,
J.
,
2016
, “
Numerical Modeling of Fluid-Structure Interaction in Arteries With Anisotropic Polyconvex Hyperelastic and Anisotropic Viscoelastic Material Models at Finite Strains
,”
Int. J. Numer. Methods Biomed. Eng.
,
32
(
10
), p.
e02756
.10.1002/cnm.2756
74.
Taylor
,
L.
,
2014
, “
FEAP—Finite Element Analysis Program
,” accessed Apr. 29, 2021, http://projects.ce.berkeley.edu/feap/
75.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
,
Saffitz
,
J. E.
, and
Yuan
,
C.
,
2004
, “
3D MRI-Based Muticomponent FSI Models for Atherosclerotic Plaques
,”
Ann. Biomed. Eng.
,
32
(
7
), pp.
947
960
.10.1023/B:ABME.0000032457.10191.e0
76.
O'Reilly
,
B. L.
,
Hynes
,
N.
,
Sultan
,
S.
,
McHugh
,
P. E.
, and
McGarry
,
J. P.
,
2020
, “
An Experimental and Computational Investigation of the Material Behaviour of Discrete Homogenous Iliofemoral and Carotid Atherosclerotic Plaque Constituents
,”
J. Biomech.
,
106
, p.
109801
.10.1016/j.jbiomech.2020.109801
77.
Mofidi
,
R.
,
Powell
,
T.
,
Crotty
,
T.
,
Sheehan
,
S.
,
Mehigan
,
D.
,
MacErlaine
,
D.
, and
Keaveny
,
T.
,
2011
, “
Increased Internal Carotid Artery Peak Systolic Velocity Is Associated With Presence of Significant Atherosclerotic Plaque Instability Independent of Degree of Ica Stenosis
,”
Int. J. Angiol.
,
14
(
02
), pp.
74
80
.10.1007/s00547-005-1079-1
78.
Bang
,
J.
,
Dahl
,
T.
,
Bruinsma
,
A.
,
Kaspersen
,
J.
,
Hernes
,
T.
, and
Myhre
,
H.
,
2003
, “
A New Method for Analysis of Motion of Carotid Plaques From RF Ultrasound Images
,”
Ultrasound Med. Biol.
,
29
(
7
), pp.
967
976
.10.1016/S0301-5629(03)00904-9
79.
Leach
,
J.
,
Rayz
,
V.
,
Soares
,
B.
,
Wintermark
,
M.
,
Mofrad
,
M. R. K.
, and
Saloner
,
D.
,
2010
, “
Carotid Atheroma Rupture Observed In Vivo and FSI-Predicted Stress Distribution Based on Pre-Rupture Imaging
,”
Ann. Biomed. Eng.
,
38
(
8
), pp.
2748
2765
.10.1007/s10439-010-0004-8
80.
Pedrigi
,
R. M.
,
de Silva
,
R.
,
Bovens
,
S. M.
,
Mehta
,
V. V.
,
Petretto
,
E.
, and
Krams
,
R.
,
2014
, “
Thin-Cap Fibroatheroma Rupture Is Associated With a Fine Interplay of Shear and Wall Stress
,”
Arterioscler., Thromb., Vasc. Biol.
,
34
(
10
), pp.
2224
2231
.10.1161/ATVBAHA.114.303426
81.
Richardson
,
P.
,
2002
, “
Biomechanics of Plaque Rupture: Progress, Problems, and New Frontiers
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
524
536
.10.1114/1.1482781
82.
Arroyo
,
L. H.
, and
Lee
,
R. T.
,
1999
, “
Mechanisms of Plaque Rupture: Mechanical and Biologic Interactions
,”
Cardiovasc. Res.
,
41
(
2
), pp.
369
375
.10.1016/S0008-6363(98)00308-3
83.
Van der Wal
,
A. C.
, and
Becker
,
A. E.
,
1999
, “
Atherosclerotic Plaque Rupture—Pathologic Basis of Plaque Stability and Instability
,”
Cardiovasc. Res.
,
41
(
2
), pp.
334
344
.10.1016/S0008-6363(98)00276-4
84.
Huang
,
H.
,
Virmani
,
R.
,
Younis
,
H.
,
Burke
,
A. P.
,
Kamm
,
R. D.
, and
Lee
,
R. T.
,
2001
, “
The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques
,”
Circulation
,
103
(
8
), pp.
1051
1056
.10.1161/01.CIR.103.8.1051
85.
Brott
,
T.
,
Halperin
,
J.
,
Abbara
,
S.
,
Bacharach
,
J.
,
Barr
,
J.
,
Bush
,
R.
,
Cates
,
C.
,
Creager
,
M.
,
Fowler
,
S.
,
Friday
,
G.
,
Hertzberg
,
V.
,
McIff
,
E.
,
Moore
,
W.
,
Panagos
,
P.
,
Riles
,
T.
,
Rosenwasser
,
R.
, and
Taylor
,
A.
,
2011
, “
2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS Guideline on the Management of Patients With Extracranial Carotid and Vertebral Artery Disease: Executive Summary. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, C
,”
Circulation
,
124
, pp.
489
532
.10.1161/CIR.0b013e31820d8d78
86.
Takaya
,
N.
,
Yuan
,
C.
,
Chu
,
B.
,
Saam
,
T.
,
Underhill
,
H.
,
Cai
,
J.
,
Tran
,
N.
,
Polissar
,
N.
,
Isaac
,
C.
,
Ferguson
,
M.
,
Garden
,
G.
,
Cramer
,
S.
,
Maravilla
,
K.
,
Hashimoto
,
B.
, and
Hatsukami
,
T.
,
2006
, “
Association Between Carotid Plaque Characteristics and Subsequent Ischemic Cerebrovascular Events: A Prospective Assessment With MRI—Initial Results
,”
Stroke
,
37
(
3
), pp.
818
823
.10.1161/01.STR.0000204638.91099.91
87.
Seeger
,
J. M.
, and
Klingman
,
N.
,
1987
, “
The Relationship Between Carotid 2Plaque Composition and Neurologic Symptoms
,”
J. Surg. Res.
,
43
(
1
), pp.
78
85
.10.1016/0022-4804(87)90050-3
88.
Zhao
,
X.-Q.
, and
Hatsukami
,
T. S.
,
2018
, “
Risk Factors for Development of Carotid Plaque Components
,”
JACC: Cardiovasc. Imaging
,
11
(
2
), pp.
193
195
.10.1016/j.jcmg.2016.12.027
89.
Carr
,
S.
,
Farb
,
A.
,
Pearce
,
W. H.
,
Virmani
,
R.
, and
Yao
,
J. S.
,
1996
, “
Atherosclerotic Plaque Rupture in Symptomatic Carotid Artery Stenosis
,”
J. Vasc. Surg.
,
23
(
5
), pp.
755
766
.10.1016/S0741-5214(96)70237-9
90.
Nicolaides
,
A.
,
Kakkos
,
S.
,
Kyriacou
,
E.
,
Griffin
,
M.
,
Sabetai
,
M.
,
Thomas
,
D.
,
Tegos
,
T.
,
Geroulakos
,
G.
,
Labropoulos
,
N.
,
Dor
,
C.
,
Morris
,
T.
,
Naylor
,
R.
,
Abbott
,
A.
,
Adovasio
,
R.
,
Ziani
,
B.
,
Alò
,
F.
,
Cicilioni
,
C.
,
Ambrosio
,
G.
,
Andreev
,
A.
, and
Wilkinson
,
A.
,
2010
, “
Asymptomatic Internal Carotid Artery Stenosis and Cerebrovascular Risk Stratification
,”
J. Vasc. Surg.
,
52
(
6
), pp.
1486
1496
.10.1016/j.jvs.2010.07.021
91.
Redgrave
,
J.
,
Lovett
,
J.
, and
Rothwell
,
P.
,
2010
, “
Histological Features of Symptomatic Carotid Plaques in Relation to Age and Smoking the Oxford Plaque Study
,”
Stroke
,
41
(
10
), pp.
2288
2294
.10.1161/STROKEAHA.110.587006
92.
Altaf
,
N.
,
Goode
,
S.
,
Beech
,
A.
,
Gladman
,
J.
,
Morgan
,
P.
,
Macsweeney
,
S.
, and
Auer
,
D.
,
2011
, “
Plaque Hemorrhage Is a Marker of Thromboembolic Activity in Patients With Symptomatic Carotid Disease
,”
Radiology
,
258
(
2
), pp.
538
545
.10.1148/radiol.10100198
93.
Ku
,
D.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.10.1146/annurev.fluid.29.1.399
94.
Lancellotti
,
R. M.
,
Vergara
,
C.
,
Valdettaro
,
L.
,
Bose
,
S.
, and
Quarteroni
,
A.
,
2017
, “
Large Eddy Simulations for Blood Dynamics in Realistic Stenotic Carotids
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
11
), pp.
1
25
.10.1002/cnm.2868
You do not currently have access to this content.